Blaž Hudobivnik (2016) Reševanje močno povezanih inženirskih problemov z uporabo avtomatskega odvajanja. Doktorska disertacija.
Povzetek
V doktorski disertaciji je predstavljen pristop k formulaciji in reševanju močno povezanih inženirskih problemov po metodi končnih elementov z uporabo tehnologije avtomatskega odvajanja, kar nam omogočata orodji AceGen in AceFEM. Prikazano je, da je možno poljubno šibko obliko diferencialnih enačb povezanega problema preoblikovati v skalarno funkcijo, t. i. psevdo-potencial. Z uporabo avtomatskega odvajanja in ustreznih izjem pri odvajanju se lahko iz psevdo-potenciala avtomatsko izpeljejo enačbe problema in konsistentna tangentna matrika končnega elementa, ki zagotovijo kvadratično konvergenco Newton-Raphsonove iteracijske metode. Hkrati taka formulacija problema vodi do izjemno hitrih in računsko natančnih kod končnih elementov. Z velikim številom fizikalnih polj se soočimo s problemom naraščanja programske kode končnega elementa z vsakim dodanim poljem. Problem smo rešili z aditivno razdelitvijo celotnega povezanega problema na posamezne podprobleme, katerih koda končnega elementa bo zapisana v ločenem končnem elementu na način, da se ohrani kvadratična konvergenca Newton-Raphsonove iteracije. Na računskih primerih termo-hidro-mehanskih problemov je pokazano, da je ločena formulacija primerno učinkovita in računsko enakovredna skupni formulaciji. Ločena formulacija končnih elementov je lastnost sekvenčnega pristopa, zato smo na različnih primerih pokazali, da je enovito oz. celovito reševanje polnega sistema učinkovitejše od ločenega oz. sekvenčnega reševanja. V doktorski disertaciji je predstavljen tudi nov pristop k izračunu matričnih funkcij. Te so nujne za formulacijo nelinearnih mehanskih problemov, kot so nekateri hiperelastični modeli (npr. Henckyjev in Ogdenov model) in natančen opis evolucije plastičnega tečenja v primeru velikih deformacij. Predstavljena je nova metoda avtomatske izpeljave poljubne matrične funkcije in njenega prvega in drugega odvoda za matrike dimenzije 3 _ 3 z realnimi lastnimi vrednostmi. Opisana metoda nudi alternativo formulacijam, ki temeljijo na lastnih vrednostih, saj je rodovna funkcija za razliko od lastnih vrednosti stabilna in gladka. Rodovna funkcija je izražena z lastnimi vrednostmi matrike, zato je v okolici večkratnih lastnih vrednosti razvita v potenčno vrsto. Kreirana je bila tudi knjižnica podprogramov za izračun standardnih matričnih funkcij v zaključeni obliki. S tem lahko izbrane matrične funkcije pri formulaciji problemov obravnavamo kot elementarne funkcije. Na posameznih matrikah in različnih kombinacijah hiperelastičnih in elasto-plastičnih modelov smo pokazali, da so izpeljane matrične funkcije in njeni odvodi točni in natančni, formulacija pa je učinkovita.
Vrsta dela: | Visokošolsko delo (Doktorska disertacija) |
Ključne besede: | avtomatsko odvajanje, povezani problemi, inženirski problemi, velike deformacije, termo-hidro-mehanski problem, kvadratična konvergenca, matrične funkcije, hiperelastični modeli, Henckyjev model, Ogdenov model, model Cam-Clay, metoda končnih elementov |
Obseg in dodatki: | 159 str., 72 sl., 39 pregl., 407 en. |
Jezik vsebine: | slovenščina |
Mentor / Somentorji: | Ime in priimek | ID | Funkcija |
---|
prof. dr. Jože Korelc | 56 | Mentor |
|
Datum in ura zagovora: | 10 februar 2016 |
Povezava na COBISS: | http://www.cobiss.si/scripts/cobiss?command=search&base=50057&select=(ID=7393121) |
Ustanova: | Univerza v Ljubljani |
Fakulteta: | Fakulteta za gradbeništvo in geodezijo |
Katedre: | Fakulteta za gradbeništvo in geodezijo > Oddelek za gradbeništvo > Katedra za metalne konstrukcije (KMK) |
ID vnosa: | 5444 |
URI: | http://drugg.fgg.uni-lj.si/id/eprint/5444 |
---|
Akcije (potrebna je prijava)