Prediction of subsidence due to underground mining by artificial neural networks

Tomaž Ambrožič in Goran Turk (2003) Prediction of subsidence due to underground mining by artificial neural networks. Computers & Geosciences, 29 (5). str. 627-637. ISSN 0098-3004

[img]
Predogled
PDF
Prenos (327Kb)

    Povzetek

    Alternatively to empirical prediction methods, methods based on influential functions and on mechanical model, artificial neural networks (ANNs) can be used for the surface subsidence prediction. In our case, the multi-layer feed-forward neural network was used. The training and testing of neural network is based on the available data. Input variables represent extraction parameters and coordinates of the points of interest, while the output variable represents surface subsidence data. After the neural network has been successfully trained, its performance is tested on a separate testing set. Finally, the surface subsidence trough above the projected excavation is predicted by the trained neural network. The applicability of ANN for the prediction of surface subsidence was verified in different subsidence models and proved on actual excavated levels and in levelled data on surface profile points in the Velenje Coal Mine. (C) 2003 Elsevier Science Ltd. All rights reserved.

    Vrsta dela: Članek
    Ključne besede: Subsidence prediction; Artificial neural network; Multi-layer feed-forward neural network; Approximation of functions; Mining damage
    Povezava na COBISS: http://www.cobiss.si/scripts/cobiss?command=search&base=50057&select=(ID=1972833)
    Ustanova: Univerza v Ljubljani
    Fakulteta: Fakulteta za gradbeništvo in geodezijo
    Katedre: Fakulteta za gradbeništvo in geodezijo > Oddelek za geodezijo > Katedra za geodezijo (KG)
    Fakulteta za gradbeništvo in geodezijo > Oddelek za gradbeništvo > Katedra za mehaniko (KM)
    ID vnosa: 3381
    URI: http://drugg.fgg.uni-lj.si/id/eprint/3381

    Akcije (potrebna je prijava)

    Pregled vnosa

    Prenosi dokumenta

    Še več statistike za to delo...