Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo

Jamova cesta 2 1000 Ljubljana, Slovenija http://www3.fgg.uni-lj.si/

DRUGG – Digitalni repozitorij UL FGG http://drugg.fgg.uni-lj.si/

To je izvirna različica zaključnega dela.

Prosimo, da se pri navajanju sklicujte na bibliografske podatke, kot je navedeno:

Turčić, M., 2015. Terestrično lasersko skeniranje prelivne stene MHE Melje za izračun deformacij. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo. (mentorica Savšek, S., somentor Kregar, K.): 35 str.

Datum arhiviranja: 08-10-2015

Jamova cesta 2 SI – 1000 Ljubljana, Slovenia http://www3.fgg.uni-lj.si/en/

DRUGG – The Digital Repository http://drugg.fgg.uni-lj.si/

This is original version of final thesis.

When citing, please refer to the publisher's bibliographic information as follows:

Turčić, M., 2015. Terestrično lasersko skeniranje prelivne stene MHE Melje za izračun Thesis. deformacij. B.Sc. Ljubljana, University of Ljubljani, Faculty of civil and geodetic engineering. (supervisor Savšek, co-supervisor S., Kregar, K.): 35 pp.

Archiving Date: 08-10-2015

Jamova 2 1000 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si

UNIVERZITETNI ŠTUDIJSKI PROGRAM PRVE STOPNJE GEODEZIJA IN GEOINFORMATIKA

Kandidat:

MATEO TURČIĆ

TERESTRIČNO LASERSKO SKENIRANJE PRELIVNE STENE MHE MELJE ZA IZRAČUN DEFORMACIJ

Diplomska naloga št.: 93/GIG

TERRESTRIAL LASER SCANNING OF THE OVERFLOW WALL ON A SMALL HYDRO POWER PLANT MELJE FOR DEFORMATION CALCULATIONS

Graduation thesis No.: 93/GIG

Mentorica: doc. dr. Simona Savšek

Somentor: asist. Klemen Kregar

Ljubljana, 15. 09. 2015

STRAN ZA POPRAVKE, ERRATA

Stran z napako

Vrstica z napako

Namesto

Naj bo

IZJAVA O AVTORSTVU

Podpisani MATEO TURČIĆ izjavljam, da sem avtor diplomske naloge z naslovom: "TERESTRIČNO LASERSKO SKENIRANJE PRELIVNE STENE MALE HIDROELEKTRARNE MELJE ZA IZRAČUN DEFORMACIJ".

Izjavljam, da je elektronska različica v vsem enaka tiskani različici.

Izjavljam, da dovoljujem objavo elektronske različice v repozitoriju UL FGG.

Ljubljana, 7. september 2015

MATEO TURČIĆ

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK

UDK:	528.48:621.311.21(043.2)
Avtor:	Mateo Turčić
Mentorica:	doc. dr. Simona Savšek
Somentor:	asist. Klemen Kregar
Naslov:	Terestrično lasersko skeniranje prelivne stene male hidroelektrarne
	Melje za izračun deformacij
Tip dokumenta:	Diplomska naloga - UNI
Obseg in oprema:	35 str., 20 tabel., 42 sl., 19 en., 6 pril.
Ključne besede:	lasersko skeniranje, hidroelektrarna, projektni koordinatni sistem,
	izračun deformacij

Izvleček

V diplomski nalogi smo testirali elektronski tahimeter Leica Nova MultiStation MS50, ki vključuje tehnologijo terestričnega laserskega skeniranja. Izvedeni sta bili dve neodvisni izmeri prelivne stene male hidroelektrarne Melje, na osnovi katerih smo ocenili deformacije. Ker instrument omogoča direktno georeferenciranje, smo skenograme posamezne terminske izmere enostavno združili v projektni koordinatni sistem. Primerjavo oblakov točk na osnovi dveh terminskih izmer smo obdelali s prosto dostopnima programoma Cloud Compare in MeshLab.

BIBLIOGRAPHIC – DOCUMENTALISTIC INFORMATION AND ABSTRACT

UDC:	528.48:621.311.21(043.2)
Author:	Mateo Turčić
Supervisor:	Assist. Prof. Simona Savšek, Ph.D.
Co-advisor:	Assist. Klemen Kregar
Title:	Terrestrial laser scanning of the overflow wall on a small hydro power
	plant Melje for deformation calculations
Document type:	Graduation Thesis – University studies
Scope and tools:	35 p., 20 tab., 42 fig., 19 eq., 6 ann.
Key words:	laser scanning , hydro power plants, project coordinate system,
	calculating the deformation

Abstract

In this thesis, we tested an electronic total station Leica Nova MS50 MultiStation, which includes technology of terrestrial laser scanning. There have been two independent measuring the overflow wall of the small hydro power plant Melje which allowed us to assess the deformation of overflow wall. Because the instrument enables the direct georeferencing, we have easily integrated point clouds from first and second epoch into the project coordinate system. Comparision of point clouds from first and second epoch was treated with open source programs Cloud Compare and MeshLab.

ZAHVALA

Za veliko pomoč in nasvete ter za njihov čas pri izdelavi diplomskega dela se iskreno zahvaljujem mentorici doc. dr. Simoni Savšek in somentorju asist. Klemenu Kregarju.

Zahvaljujem se tudi mojim bližnjim za njihovo podporo v času študija in pri izdelavi diplomskega dela.

KAZALO VSEBINE

Izjave	V
Bibliografsko – dokumentacijska stran in izvleček	VII
Bibliographic – documentalistic information and abstract	IX
Zahvala	XI
CILJ IN NAMEN	1
1 MALA HIDROELEKTRARNA MELJE	2
2 OBLIKA OPAZOVALNE MREŽE	4
3 STABILIZACIJA IN SIGNALIZACIJA TOČK	6
4 INSTRUMENTARIJ IN MERSKA OPREMA	9
5 METODE IZMERE	
5.1 Klasične terestrične metode izmere	
5.1.1 Triangulacija in trilateracija	
5.1.2 Trigonometrično višinomerstvo	
5.2 Terestrično lasersko skeniranje	14
6 MERITVE IN OBDELAVA MERITEV	17
6.1 Meteorološki popravki	17
6.2 Geometrični popravki	
6.3 Projekcijski popravki	20
6.4 Skenogrami in natančnost skeniranja točk	20
7 IZRAVNAVA GEODETSKE MREŽE	24
7.1 Horizontalna izravnava	25
7.2 Višinska izravnava	
8 IZRAČUN DEFORMACIJ PRELIVNE STENE MHE MELJE	29
9 ZAKLJUČEK	34
VIRI	

KAZALO TABEL

Tabela	1. Tehnični podatki instrumenta Leica Nova MultiStation MS50 (Geoservis, 2015)	10
Tabela	2. Podatki o aritmetičnih sredinah meteoroloških parametrov v prvi terminski	
	izmeri 21. 04. 2015.	18
Tabela	3. Podatki o aritmetičnih sredinah meteoroloških parametrov v drugi terminski	10
T 1 1	IZIBELL 10. 07. 2015.	10
Tabela	4. Referencini podatki za tahimeter Leica Nova MS50 (Geoservis, 2015.)	18
Tabela	5. Empirično določene konstante za izračun grupnega lomnega količnika	18
Tabela	6. Pridobljene velikosti oblakov točk in čas zajema v prvi terminski izmeri	
	dne 21. 04. 2015.	20
Tabela	7. Pridobljene velikosti oblakov točk in čas zajema v drugi terminski izmeri	
	dne 10. 07. 2015.	21
Tabela	8. Tehnični podatki o skeniranju instrumenta Leica Nova MultiStation MS50	
	(Geoservis, 2015)	23
Tabela	9. Koordinate danih točk	24
Tabela	10. Približne koordinate novih točk	24
Tabela	11. Sredine horizontalnih smeri, zenitnih razdalj in reducirane dolžine za meritve,	
	ki smo izvajali dne 21. 04. 2015.	24
Tabela	12. Sredine horizontalnih smeri, zenitnih razdalj in reduciranih dolžin za meritve,	
	ki smo jih izvajali dne 10. 07. 2015.	25
Tabela	13. Izravnane horizontalne koordinate iz meritev 21. 04. 2015.	26
Tabela	14. Izravnane horizontalne koordinate iz meritev 10. 07. 2015.	27
Tabela	15. Izravnane višine točk prve terminske izmere dne 21. 04. 2015.	28
Tabela	16. Izravnane višine točk druge terminske izmere dne 10. 07. 2015.	28
Tabela	17. Primer: Koordinate ogljišč kvadra/sektorja 12	30
Tabela	18. Izračunane minimalna in maksimalna razdalja ter srednja vrednost med	
	dvema terminskima izmerama za posamezne sektorje	31
Tabela	19. Podatki o oddaljenosti med skenogramoma v sektorju 5	32
Tabela	20. Podatki o oddaljenosti med skenogramoma v sektorju 20	33

KAZALO SLIK

Slika 1.	Jez Melje pred letom 2006. (www. sl.wikipedia.org)	2
Slika 2.	Izgradnja male hidroelektrarne Melje (www. http://maribor24.si/)	2
Slika 3.	Mala hidroelektrarna Melje (www.dem.si/sl-si/Elektrarne-in-proizvodnja)	3
Slika 4.	Oblika opazovalne mreže male hidroelektrarne Melje	4
Slika 5.	Stabilizacija z betonskim stebrom (Vodopivec in Kogoj, 2005)	6
Slika 6.	Stabilizacija točke O2	6
Slika 7.	Stabilizacija točke Ol	6
Slika 8.	Stabilizacija točke O4	7
Slika 9.	Stabilizacija točke O3	7
Slika 10.	Talna stabilizacija merske točke in ekscentrično stojišče (Vodopivec in	
	Kogoj, 2005)	7
Slika 11.	Signalizacija talne točke O3	8
Slika 12.	Signalizacija točke O2	8
Slika 13.	Tahimeter Leica Nova MultiStation MS50 (http://www.leica-geosystems.com)	9
Slika 14.	Leica Wild GPH1P	11
Slika 15.	Trinožni podstavek in nastavek za reflektor	11
Slika 16.	Aspiracijski psihrometer	12
Slika 17.	Paroscientific digitalni barometer	12
Slika 18.	Klešče za varovalni čep	12
Slika 19.	Žepni merski trak Leica (http://images.tigersupplies.com)	12
Slika 20.	Trigonometrično višinomerstvo (Fröhlich, 2013)	13
Slika 21.	Impulzni način merjenja dolžin - osnovni princip (Kogoj, 2005)	14
Slika 22.	Fazni način merjenja dolžin (Kogoj, 2005)	15
Slika 23.	Triangulacijska metoda z eno in dvama kamerama (Kolenc, 2004)	15
Slika 24.	Laserski skener s pritrjenim digitalnim fotoaparatom (Hostnik, 2013)	16
Slika 25.	Postopek ročnega finega viziranja v prvem polgirusu s stojišča S1	17
Slika 26.	Izvajanje meritev na stojišču S1 v prvi terminski izmeri dne 21. 04. 2015.	17
Slika 27.	Prikaz izbranega območja skeniranja s stojišča S2 v prvi terminski izmeri	
	dne 21. 04. 2015.	20
Slika 28.	Skenogram iz stojišča O1 zajet v prvi terminski izmeri dne 21. 04. 2015.	21
Slika 29.	Skenogram iz stojišča O1 zajet v drugi terminski izmeri dne 10. 07. 2015.	21
Slika 30.	Skenogram iz stojišča O2 zajet v prvi terminski izmeri dne 21. 04. 2015.	22
Slika 31.	Skenogram iz stojišča O2 zajet v drugi terminski izmeri dne 10. 07. 2015.	22
Slika 32.	Skenogram iz stojišča O2 zajet v prvi terminski izmeri dne 21. 04. 2015.	22
Slika 33.	Skenogram iz stojišča O2 zajet v drugi terminski izmeri dne 10. 07. 2015.	22
Slika 34.	Združeni skenogrami iz stojiš O1, O2 in S2 v prvi terminski izmeri	
	dne 21. 04. 2015.	23
Slika 35.	Združeni skenogrami iz stojiš O1, O2 in S2 v drugi terminski izmeri	
	dne 10. 07. 2015.	23
Slika 36.	Prikaz geodetske mreže in standardnih elips pogreškov prve terminske	
	izmere dne 21. 04. 2015	26
Slika 37.	Prikaz geodetske mreže in standardnih elips pogreškov druge terminske	
	izmere dne 10. 07. 2015	27
Slika 38.	Razlaga octree strukture (www.jara.org)	29
Slika 39.	Razdelitev prelivne stene na sektorje	30
Slika 40.	Prikaz izdelave sektorja 12	30
Slika 41.	Grafični prikaz oddaljenosti dveh skenogramov v sektorju 5	32
Slika 42.	Grafični prikaz oddaljenosti dveh skenogramov v sektorju 20	33

CILJ IN NAMEN

Lasersko skeniranje je novejša geodetska metoda, s katero prikazujemo realni svet v virtualnem 3D prikazu. Njegova visoko razvita tehnologija omogoča snemanje več milijonov točk, ki se združujejo v gost oblak točk, ki ga obdelamo v ustreznem programu. Lasersko skeniranje se najbolj pogosto uporablja v geodeziji, gradbeništvu, arhitekturi, arheologiji in v industriji.

Namen diplomske naloge je bil na konkretnem primeru preučiti potek skeniranja in obdelave pridobljenih podatkov v poljubnem programu ter preučiti primernost uporabe terestričnega laserskega skenerja za potrebe ugotavljanja deformacij. Testni primer je bila prelivna stena male hidroelektrarne Melje, kjer tudi sicer potekajo specialne precizne geodetske meritve v območju sidra S2 z namenom ugotavljanja deformacij prelivne stene. Prva terenska izmera je bila izvedena 21. aprila 2015, ko smo skupaj s študenti druge stopnje študijskega programa Geodezija in geoinformatika Fakultete za gradbeništvo in geodezijo opravili terenske meritve ter iz teh meritev pridobili oblak točk prelivne stene male hidroelektrarne Melje. Druga terminska izmera je bila izvedena 10. junija 2015, ko smo na osnovi meritev ugotavljali premike prelivne stene MHE Melje. Na osnovi dveh neodvisnih izmer smo testirali uporabnost elektronskega tahimetra Leica Nova MultiStation MS50 za postavljeno hipotezo ali je metoda terestričnega laserskega skeniranja primerna za ugotavljanje premikov.

Diplomska naloga je razdeljena na dva dela, in sicer na teoretični in na praktični del.

Teoretični del vsebuje poglavje o zgodovini male hidroelektrarne Melje ter splošne podatke o njej. Mala hidroelektrarna je bila zgrajena, da skrbi za biološki minimum v stari strugi reke Drave in tudi, da proizvaja električno energijo.

Drugo in tretje poglavje opisujeta obliko opazovalne mreže ter vrsto in način stabilizacije in signalizacije posamezne točke oziroma vsakega stojišča v mikro mreži.

V četrtem poglavju je podrobno opisan instrument Leica Nova MultiStation MS50, ki smo ga uporabljali tako za izmero terestrične mikro mreže, kakor tudi za skeniranje prelivne stene male hidroelektrarne Melje. To je najnovejši instrument proizvajalca Leica Geosystems, ki omogoča številne napredne funkcije.

Teoretični del vsebuje še opis metod izmere, in sicer klasične terestrične metode izmere in laserskega skeniranja.

Drugi del diplomske naloge je praktični. V šestem in sedmem poglavju obravnavamo obdelavo meritev in skenogramov ter izvedemo položajno in višinsko izravnavo terestrične mikro mreže. Osmo poglavje podrobno opisuje izračun deformacij prelivne stene male hidroelektrane Melje s pomočjo laserskega terestričnega skeniranja. Prikazani so skenogrami iz vsakega stojišča, izračunana je natančnost skeniranja ter prikazana obdelava skenogramov. Za zaključek so grafično ter računsko prikazane deformacije prelivne stene male hidroelektrarne Melje. V nalogi skušamo na osnovi testnega primera in uporabe elektronskega tahimetra Leica Nova MultiStation MS50 ugotoviti primernost metode laserskega skeniranja za ugotavljanje premikov in deformacij. Podamo kritično oceno primernosti uporabljene metodologije glede na uporabljeno mersko opremo in zahteve naročnika.

1 MALA HIDROELEKTRARNA MELJE

Mala hidroelektrarna Melje se nahaja na 46°33'39.0" severne geografske širine in 15°40'23.5" vzhodne geografske dolžine v regionalnem središču pokrajine Štajerske, v mestu Maribor ob jezu Melje v strugi reke Drave (slika 1).

To je ena izmed osmih hidroelektrarn v Sloveniji, ki se nahajajo na slovenskem delu reke Drave in je tudi najmanjša med njimi. Za upravljanje in vzdrževanje male hidroelektrarne Melje je zadolženo podjetje "Dravske elektrarne Maribor d. o. o.".

Slika 1. Jez Melje pred letom 2006. (www. sl.wikipedia.org)

Marca 2006 se je začela prenova jezu Melje, nadvišanje dovodnega kanala ter izgradnja male hidroelektrarne Melje (slika 2). Izvedena je bila kompletna zamenjava hidromehanske opreme jezu z nadvišanjem zapornic vseh šestih pretočnih polj. Zamenjana je bila elektro oprema in sistem vodenja, na novo so bili zgrajeni srednjenapetostno in nizkonapetostno stikališče ter nova mala hidroelektrarna na desnem bregu Drave za potrebe izkoriščanja ekološko sprejemljivega pretoka, ki se preliva v strugo Drave. Zaradi zagotavljanja biološkega minimuma v stari strugi reke Drave hidroelektrarna izkorišča predpisani zimski pretok, ki znaša 10 m³ na sekundo ter poletni pretok, ki je dvakrat večji in znaša 20 m³ na sekundo.

Slika 2. Izgradnja male hidroelektrarne Melje (www. http://maribor24.si/)

Elektrarna vsebuje dva agregata, katerih namen je proizvodnja električne energije. Predvidena letna proizvodnja električne energije male hidroelektrarne Melje je 8,69 GWh. Prvi agregat se nahaja v novi strojnični zgradbi ob prelivnem zidu dovodnega kanala hidroelektrarne Zlatoličje in ima pretočno sposobnost 20 m³ na sekundo. Drugi agregat, ki se uporablja le kot rezerva, se nahaja v strojnični zgradbi na levem bregu reke Drave s protočnostjo 10 m³ na sekundo.

Prenova jezu Melje je bila zaključena avgusta 2009. Mala hidroelektrarna Melje pa je začela obratovati januarja 2009. (vir: http://www.energetika-portal.si/novica/n/projekt-prenove-hidroelektrarne-zlatolicje-jezu-melje-in-izgradnje-male-hidroelektrarne-melje-je-z/)

Slika 3. Mala hidroelektrarna Melje (www.dem.si/sl-si/Elektrarne-in-proizvodnja)

Malo hidroelektrarno Melje po karakteristikah uvrščamo med velike pregrade zaradi svoje 17 metrov visoke težnostno betonske pregrade (slika 3). Za vse velike pregrade je potrebno periodično spremljanje premikov objekta v prostoru. Spremljanje premikov temelji na zakonodaji in tehničnih predpisih:

- Pravilnik o tehničnem opazovanju visokih jezov, Ur. l. SFRJ, št. 7/66;
- Zakon o varstvu okolja (ZVO-1-UPB1), Ur. l. RS, št. 39/2006.

Na območju male hidroelektrarne Melje je bila vzpostavljena in projektirana terestrična mikro mreža z referenčnimi in kontrolnimi točkami, katerim z geodetskimi terestričnimi meritvami določamo prostorske koordinate. Stabilnost referenčnih točk in značilne premike kontrolnih točk na prelivnem polju ugotavljamo s primerjavo dveh neodvisnih terminskih izmer letno. Med kontrolne meritve uvrščamo izvajanje meritev, obdelavo podatkov in analizo rezultatov. Ugotavljanje premikov in stabilnosti pregradnega objekta ima velik pomen pri zagotavljanju varnosti za okolico hidroelektrarne – za človeška življenja in tudi za njihovo lastnino.

2 OBLIKA OPAZOVALNE MREŽE

Na sliki 4 je prikazana oblika opazovalne mreže male hidroelektrarne Melje na podlagi državnega ortofoto posnetka.

Slika 4. Oblika opazovalne mreže male hidroelektrarne Melje

Terestrično mikro mrežo male hidroelektrarne Melje sestavljajo štiri točke osnovne mreže (O1, O2, O3 in O4) ter dve pomožni točki (S1 in S2). Štiri osnovne točke so razporejene tako, da tvorijo geodetski štirikotnik, ki zagotavlja zelo zanesljive rezultate meritev. Dve točki osnovne mreže godetskega štirikotnika, ki sta stabilizirani na obali (O3 in O4), definirata geodetski datum.

Mreža je definirana in vzpostavljena na osnovi zahtev investitorja in rezultatov simulacije. Število in način medsebojnih povezav nam zagotavlja dovolj čvrsto mrežo, omogoča dobro in hitro odkrivanje ter izločitev grobih pogreškov.

Terestrična mikro mreža male hidroelektrarne Melje je sestavljena iz štirih referenčnih točk, od katerih se dve nahajata na betonskih stebrih, dve pa sta domnevno stabilni talni točki. Talni točki O3 in O4, ki sta locirani na stabilni obali ob črpališču Melje, določata geodetski datum horizontalne in višinske mreže.

Geodetska horizontalna mreža je terestrična triangulacijsko – trilateracijska (kombinirana) mikro mreža. Višine točk so določene z metodo trigonometričnega višinomerstva, ki je zaradi zahtevnega dostopa prelivne stene edina primerna.

Obe mreži, horizontalna in tudi višinska, vključujeta dve osnovni točki na stebrih (O1 in O2) ter dve pomožni točki (S1 in S2), ki ju v postopku izračuna obravnavamo kot novi točki. Zaradi zadostnega števila povezav, kar nam omogoča ugotavljanje in izločanje grobo pogrešenih opazovanj, dobimo pričakovano in zahtevano natančnost določitve prostorskih koordinat novih točk, ki jo je predpisal naročnik [1].

3 STABILIZACIJA IN SIGNALIZACIJA TOČK

Terestrično mikro mrežo male hidroelektrarne Melje sestavljajo štiri točke osnovne mreže ter dve pomožni točki.

Dve od štirih točk osnovne mreže male hidroelektrarne Melje in sicer točki O1 in O2 sta stabilizirani z betonskim stebrom, ki omogoča prisilno centriranje (slika 5). To je klasični način stabilizacije v preciznih mikro mrežah za ugotavljanje deformacij.

Slika 5. Stabilizacija z betonskim stebrom (Vodopivec in Kogoj, 2005)

Oba stebra (točki O1 in O2) sta okrogla armirano betonska stebra, široka okrog 30 centimetrov in visoka 140 centimetrov. Stebra sta zaščitena z betonsko cevjo in vmesnim praznim prostorom, ki je zapolnjen s temperaturnim izolatorjem. Na glavi stebra je vzidana centrirna kovinska plošča, ki ima vgrajen srčni vijak, na katerega privijemo trinožni podstavek instrumenta ali nosilec prizme z možnostjo horizontiranja (slika 6 in slika 7).

Slabosti takšnega načina stabilizacije so možnost lokalnega premika, možnost nagiba, takšna točka lahko predstavlja fizično oviro in velik strošek izdelave.

Prednosti so velika lastna stabilnost točke ob kvalitetni izvedbi stabilizacije, ki nam zagotavlja prisilno centriranje z natančnostjo boljšo od 0,1 milimetra [2].

Slika 6. Stabilizacija točke O2

Slika 7. Stabilizacija točke O1

Drugi dve točki osnovne mreže male hidroelektrarne Melje in sicer točki O3 in O4 sta talni točki. Točki O3 in O4 se obravnavata kot domnevno stabilni točki. Točki sta vgrajeni v betonsko podlago. Stabilizacija je realizirana s sidrom, ki je zavrtano v beton na globini 30 centimetrov. Na vrhu čepa se nahaja navoj, ki omogoča privitje nosilca za prizme (slika 8 in slika 9). Ta način nam omogoča natančnost prisilnega centriranja boljšo od 0.3 milimetrov. Na vsaki točki se nahaja tudi varovalni čep.

Slika 8. Stabilizacija točke O4

Slika 9. Stabilizacija točke O3

Dve pomožni točki (ekscentrični stojišči) S1 in S2, ki se nahajata v neposredni bližini talnih točk O3 in O4, nista trajno stabilizirani. Ekscentrično stojišče je začasno stabilizirano s kovinskim čepom v podlago. Oddaljenost ekscentra od centra točke je okrog 10 metrov (slika 10) [2].

Slika 10. Talna stabilizacija merske točke in ekscentrično stojišče (Vodopivec in Kogoj, 2005)

Signalizacijo dveh talnih točk osnovne mreže male hidroelektrarne Melje izvedemo s prisilnim centriranjem reflektorja (slika 11). Meritve so bile izvedene iz ekscentričnih stojišč.

Slika 11. Signalizacija talne točke O3

Dve točki osnovne mreže, O1 in O2, ki se nahajata na opazovalnih stebrih, sta signalizirani s pomočjo trinožnih podstavkov in preciznih reflektorjev GPH1P (slika 12).

Slika 12. Signalizacija točke O2

4 INSTRUMENTARIJ IN MERSKA OPREMA

Meritve so bile izvedene s preciznim elektronskim tahimetrom Leica Nova MultiStation MS50 (slika 13). Ta instrument je prvi na svetu, ki v eni napravi združuje vse sodobne merske tehnologije. Vsebuje vse funkcije zajema prostora, kot so 3D skeniranje, merjenje brez reflektorja do 2 kilometra, slikovna podpora in povezave z GNSS tehnologijo. Instrument omogoča zelo natančne meritve v terestričnih geodetskih mrežah in hkrati omogoča tudi lasersko skeniranje hitrosti do 1000 točk na sekundo do maksimalne razdalje 300 metrov.

Slika 13. Tahimeter Leica Nova MultiStation MS50 (http://www.leica-geosystems.com)

Tehnični podatki o instrumentu so prikazani v Tabeli 1.

Tabela 1.	Tehnični poda	atki instrumenta	Leica Nova	MultiStation	MS50	(Geoservis,	2015)
-----------	---------------	------------------	------------	--------------	------	-------------	-------

Merjenje kotov	
Natančnost	1″
Merjenje razdalj	
Z reflektorjem (doseg/natančnost)	10000 m / 1 mm + 1.5 ppm
Brez reflektorja (doseg / natančnost)	2000 m / 2 mm + 2 ppm
Velikost pike laserskega žarka	$8 \text{ mm} \times 20 \text{ mm}$ na razdalji 50 m
Doseg ATR na okrogli reflektor GPR1	1000m, sledenje reflektorja: 800 m
Kotna natančnost in trajanje meritve ATR na GPR1	1" / običajno 2.5 s
Skeniranje	
Hitrost vrtenja s piezo motornimi pogoni	180° / s
Hitrost / največji doseg / šum	1000 Hz / 300 m / 1.0 mm na razdalji 50 m 250 Hz / 400 m / 0.8 mm na razdalji 50 m 62 Hz / 500 m / 0.6 mm na razdalji 50 m 1 Hz / 1000 m / 0.6 mm na razdalji 50 m
Vizualizacija	Vgrajen pregledovalnik 3D oblakov točk, tudi s foto-realističnim obarvanjem oblakov
Slikovna podpora	
Vgrajeni kameri (ločljivost / frekvenca osveževanje)	5 MP CMOS slikovni senzor / 20 Hz
Lastnosti	Samodejno fokusiranje, viziranje preko zaslona, digitalna skica na fotografiji
Splošno	
Operacijski sistem / nameščena programska oprema	Windows CE 6.0 / Leica SmartWorx Viva
Zaslon v obeh krožnih legah	8.9 cm, 640 x 480 slikovnih elementov (VGA), barvni LED zaslon na dotik, berljiv na soncu
Tipkovnica	36 osvetljenih tipk (12 funkcijskih in 12 alfanumeričnih tipk), pametna tipka za proženje meritev, 2 tipki za ročno nastavitev fokusiranja
Neskončni vjaki	2 vijaka za Hz pomik, 1 vijak za V pomik, vijak za ročno fokusiranje
Vgrajen pomnilnik / pomnilniški vmesniki	1 GB / SD kartica, USB ključ
Komunikacijski vmesniki	RS232, Bluetooth, WLAN
Baterija / avtonomija delovanja	Li-Ion 5.8 Ah / 7 – 9 ur (GEB242)
Temperaturno območje delovanja	- 20 °C do + 50 °C
Odpornost na prah in vodo (IEC 60529) / vlago	IP65 / 95%, brez kondenziranja

Pri signalizaciji točk smo uporabili precizne reflektorje tipa Wild GPH1P proizvajalca Leica Geosystems (slika 14). Adicijska konstanta teh reflektorjev znaša nič ($k_a = 0$) in je zato ni potrebno upoštevati pri obdelavi podatkov.

Slika 14. Leica Wild GPH1P

Merski instrument in reflektorje smo s pomočjo trinožnega podstavka privili na stative ali na opazovalne stebre (slika 15).

Slika 15. Trinožni podstavek in nastavek za reflektor

Poleg merske opreme za zajem prostorskih podatkov smo uporabili še instrumentarij za merjenje meteoroloških parametrov. Za merjenje mokre in suhe temperature smo uporabili aspiracijski psihrometer (slika 16), za merjenje zračnega tlaka pa digitalni barometer Paroscientific (slika 17). Meteorološke parametre smo odčitavali na vseh stojiščih instrumenta pred in po opravljenih meritvah.

Slika 16. Aspiracijski psihrometer

Slika 17. Paroscientific digitalni barometer

Na terenu smo uporabljali še žepni merski trak proizvajalca Leica za merjenje višine instrumenta ter posebne klešče za odpiranje varovalnega pokrova na talnih točkah (slika 18 in slika 19).

Slika 18. Klešče za varovalni čep

Slika 19. Merski trak Leica (http://images.tigersupplies.com)

5 METODE IZMERE

5.1 Klasične terestrične metode izmere

5.1.1 Kombinirana triangulacijsko - trilateracijska metoda izmere

Triangulacija je metoda določanja koordinat točk v horizontalnih mrežah na osnovi merjenih kotov. Trilateracija je metoda določanja koordinat na osnovi merjenja dolžin. S kombinacijo obeh metod pridobimo bolj čvrste in zanesljive merske povezave, ter pri izravnavi istočasno uporabimo vse merjene količine. S tem povečamo število nadštevilnih meritev in izboljšamo položajno natančnost neznank. Koordinate točk mikro mreže male hidroelektrarne Melje smo določili s kombinirano triangulacijsko – trilateracijsko metodo. Iz točk O1 in O2, ki se nahajata na betonskih stebrih in pomožnih točk (ekscentričnih stojišč) S1 in S2, ki se nahajata na stativih, smo opravljali obojestranske meritve. Na talni točki O3 in O4 ni mogoče meriti obojestransko, zato smo merili enostransko. Merili smo horizontalne smeri, zenitne razdalje in poševne dolžine.

5.1.2 Trigonometrično višinomerstvo

Z uporabo metode trigonometričnega višinomerstva smo določili tudi višine v mreži (slika 20). Ta metoda se večinoma uporablja pri mrežah manjših dimenzij. Višinske razlike se določa na osnovi merjenih zenitnih razdalj in reduciranih dolžin med točkami. Za vsako točko smo potrebovali tudi podatek o izmerjeni višini instrumenta. Za talni točki in pomožni točki na stativih je bila privzeta višina nič, kar pomeni, da so bile točke v višinskem smislu realizirane s centrom reflektorja. Na betonskih stebrih smo trikrat neodvisno z žepnim merskim trakom izmerili višino instrumenta in srednjo vrednost upoštevali pri izračunu višin točk na betonskih stebrih.

Slika 20. Trigonometrično višinomerstvo (Fröhlich, 2013)

- i višina instrumenta
- l višina signala
- z zenitna razdalja
- S_p-merjena poševna dolžina
- $S_{\rm H}-$ horizontalna razdalja
- Δh višinska razlika

5.2 Terestrično lasersko skeniranje

Sodobno, trenutno zelo trendovsko geodetsko metodo, lahko poenostavljeno pojasnimo na način kot je to zapisala Ana Hostnik: "Terestrično pomeni, da snemamo neposredno na terenu, lasersko pomeni, da za merjenje uporabljamo laserske žarke, skeniranje pa označuje hitro prečesavanje območja snemanja." [3]

Terestrično lasersko skeniranje je geodetska metoda, s katero prikazujemo realni svet v virtualnem 3D prikazu. Laserski skenerji imajo visoko razvito tehnologijo, ki nam omogoča v nekaj sekundah ali minutah posneti več tisoč ali milijonov točk in na ta način pridobiti gost oblak točk, ki ga nato obdelamo v ustreznem programu.

Terestrično lasersko skeniranje v geodeziji uporabljamo za analizo deformacij grajenih in naravnih objektov, za namen spremljanja odkopov zemeljskih plazov, za detajlno izmero, za namen evidentiranja sprememb površine, oblik in velikosti objektov ter pri izdelavi digitalnih modelov reliefa. Terestrični laserski skener zagotavlja meritve horizontalnih in tudi vertikalnih smeri ter dolžine. Rezultat teh meritev je množica ali oblak točk v 3D prostoru.

Z uporabo laserskega skeniranja merimo koordinate točk v prostoru na način, da merimo smer in razdaljo od instrumenta do površine objekta, od katerega se je laserski žarek odbil. To razdaljo izmerimo na osnovi izmerjenega časa, v katerem elektromagnetno valovanje prepotuje pot od oddajne optike proti reflektorju, od katerega se odbije nazaj proti instrumentu. To pomeni, da elektromagnetno valovanje prepotuje dvakrat enako dolžino [4].

Poznamo tri načine merjenja dolžin z uporabo laserskega skenerja in sicer impulzni, fazni in triangulacijski.

Laserski skenerji z impulznim načinom merjenja neposredno merijo čas potovanja impulza od oddajne točke do sprejemne točke s tem, da se žarek vmes odbije na površini objekta. Čas širjenja impulza predstavlja razdaljo med oddajnikom in sprejemnikom (slika 21).

Slika 21. Impulzni način merjenja - osnovni princip (Kogoj, 2005)

Za izračun razdalje je potrebno poznati svetlobno hitrost (c = 299 792 458 m/s), lomni količnik (n) in merjeni čas (τ). Lomni količnik atmosfere, skozi katero potuje signal, v normalnih pogojih v zraku znaša približno 1 (ena). Razdalja se izračuna s pomočjo naslednje formule:

$$D = \frac{c \cdot \tau}{n \cdot 2}.$$
(1)

Ta način je najprimernejši za daljše razdalje (od 50 do 500 metrov) in dosega slabše natančnosti kot skenerji s faznim načinom merjenja [4].

Fazni način merjenja razložimo na način, da laserski žarek, ki ga oddaja instrument, obravnavamo kot sinusno valovanje s spremenljivo amplitudo ali frekvenco (slika 22). Razdaljo pri skenerjih s faznim načinom merjenja računamo s primerjavo originalnega oddanega signala z odbitim signalom, ki z odbojem od tarče oslabi.

Slika 22. Fazni način merjenja dolžin (Kogoj, 2005)

Za izračun razdalje je potrebno poznati fazno razliko med merskim in referenčnim žarkom ($\Delta \varphi$), valovno dolžino moduliranega valovanja (λ_M) in število polovičnih valovnih dolžin na merjeni poti (N). Razdaljo računamo na način, da najprej izračunamo fazno razliko med obema signaloma:

$$\Delta \lambda_{M} = \lambda_{M} \cdot \left(\frac{\Delta \varphi}{2 \cdot \pi}\right). \tag{2}$$

Ko izračunamo fazno razliko med obema signaloma, moramo izračunati še dolžino med oddajno točko in točko sprejema iz izračunanega dela modulacijske valovne dolžine, določenega na osnovi merjenja fazne razlike med merskim in referenčnim žarkom:

$$D = \left(N \cdot \frac{\lambda_{M}}{2}\right) + \left(\frac{\Delta \lambda_{M}}{2}\right). \tag{3}$$

Skenerji s faznim načinom merjenja so bolj natančni kot laserski skenerji z impulznim načinom merjenja. Njihova natančnost je do 3 milimetre ter se uporabljajo pri krajših razdaljah do 100 metrov [4].

Triangulacijska metoda deluje na način, da se izračuna razdalja od oddajne točke do točke sprejema na podlagi znane dolžine baze med CCD kamero in laserskim oddajnikom ter na podlagi kotov (slika 23).

Slika 23. Triangulacijska metoda z eno in dvama kamerama (Kolenc, 2004)

Laserski žarek se projicira na površino objekta pod določenim kotom, drugi kot zazna kamera glede na lokacijo padajoče laserske pike na vidno polje kamere. "Skener se imenuje triangulacijski, zato ker laserski oddajnik, točka na predmetu in kamera tvorijo trikotnik" [5]. Pri uporabi triangulacijske metode poznamo dolžino med laserskim izvorom in kamero (projekcijskim centrom) iz

kalibracijskega poročila skenerja ter kot, ki ga oklepata laserski žarek iz oddajne točke in kamera (baza).

Slika 24. Laserski skener s pritrjenim digitalnim fotoaparatom (Hostnik, 2013)

Triangulacijska metoda merjenja se uporablja večinoma v industriji. Primerna je za majhne objekte, ki so na majhnih razdaljah do 2 metra, ker takrat dosežemo najboljšo natančnost, ki naj bi bila 0,1 milimeter na 1 meter [6, 7].

Zdaj ko so opisane različne metode merjenja z laserskim skenerjem, je potrebno opisati še postopek terestričnega laserskega skeniranja, ki sestoji iz naslednjih faz:

- Terenske meritve na vsakem stojišču pridobimo oblak točk (skenogram) v koordinatnem sistemu skenerja,
- Združitev skenogramov v skupni (objektni) koordinatni sistem za vse oblake točk,
- Obdelava oblaka točk tako združene oblake točk z lahkoto obdelujemo v enem od številnih programov za obdelavo. Programi vsebujejo opcije filtriranja, triangulacije, izdelave digitalnih modelov reliefa in ostale. Končni rezultat obdelave podatkov je 3D model skeniranega objekta.

Pomembno je omeniti, da so vse faze terestričnega laserskega skeniranja enako pomembne.

Terestrično lasersko skeniranje ima nekatere prednosti pred klasično geodetsko izmero. Pri uporabi terestričnega laserskega skeniranja ni potrebno priti v neposredni stik s točko ali objektom snemanja. Predvsem je zelo uporabno na neurejenih terenih ali na terenih z oteženim ali onemogočenim dostopom. Z enim skeniranjem območja skener posname v kratkem času zelo gosto mrežo točk s 3D koordinatami. Za obdelavo podatkov je na voljo množica programskih orodij, nekateri so tudi prosto dostopni na internetu. Obdelava podatkov se opravi na interaktiven način. Čas obdelave je močno odvisen od zahtev in natančnosti naročnika, kakor tudi od zahtevnosti in detajlov snemanega objekta. Glede na množico prostorskih podatkov je pridobljena natančnost ustrezna, ni pa primerljiva z najnatančnejšimi geodetskimi metodami določanja 3D koordinat točk. Kot rezultat pridobimo podroben prikaz našega posnetega območja oz. objekta.

6 MERITVE IN OBDELAVA MERITEV

Terestrične meritve mikro mreže Melje smo izvajali s pomočjo elektronskega tahimetra Leica Nova MultiStation MS50 v sedmih neodvisnih ponovitvah (girusih). Meritve smo izvedli obojestransko med opazovalnimi stebri in enostransko na talni točki (O3 in O4). Pred meritvami smo vnesli število smeri, ki smo jih opazovali ter število girusov, ki smo jih opravljali. Vnesli smo tudi ime stojišča. Na obeh opazovalnih stebrih je bilo potrebno izmeriti tudi višino instrumenta. Uporabljali smo instrument z avtomatskim iskanjem in viziranjem tarč tako, da je bilo potrebno imenovati in ročno fino vizirati smeri samo v prvem polgirusu. Na vsakem stojišču smo med meritvami trikrat neodvisno izmerili meteorološke popravke in sicer suho temperaturo, mokro temperaturo in zračni tlak.

Slika 25. Postopek ročnega finega viziranja v prvem polgirusu s stojišča S1

Slika 26. Izvajanje meritev na stojišču S1 dne 21. 04. 2015.

Po opravljenih terenskih meritvah smo iz instrumenta prenesli surove podatke. Preneseni podatki niso uporabni v takšni obliki ter jih je potrebno še obdelati (Priloga A). Meritve smo v primernejšo obliko uredili v programskem okolju LisCad za vsako stojišče posebej. Kot izhodno datoteko smo pridobili reducirane sredine sedmih merjenih girusov, in sicer sredine horizontalnih smeri, zenitnih razdalj ter poševnih dolžin (Priloga B).

Merjene poševne dolžine smo reducirali za meteorološke, geometrične ter projekcijske popravke. Tako smo dobili horizontalne dolžine na poljubni referenčni ploskvi, ki so vhodni podatek za izravnavo.

6.1 Meteorološki popravki

V času meritev smo na posameznom stojišču merili meteorološke parametre in sicer suho in mokro temperaturo ter zračni tlak. Za izračun meteoroloških vplivov smo uporabili aritmetične sredine izračunanih količin na terenu. Glede na to, da smo izvedli dve neodvisni terminski izmeri, sta v nadaljevanju prikazani dve tabeli o meteoroloških parametrih (tabela 2 in tabela 3).

		<u>1</u>	
Stojišče	Suha temperatura [°C]	Mokra temperatura [°C]	Zračni tlak [mbar]
S1	13,00	10,00	994,280
S2	12,60	8,70	994,260
01	16,30	10,70	993,680
02	16.30	10.00	993.370

Tabela 2. Podatki o aritmetičnih sredinah meteoroloških parametrov v prvi terminski izmeri 21.04.2015.

Tabela 3. Podatki o aritmetičnih sredinah meteoroloških parametrov v drugi terminski izmeri 10.07.2015.

Stojišče	Suha temperatura [°C]	Mokra temperatura [°C]	Zračni tlak [mbar]
S1	18,65	14,90	993,797
S2	19,07	14,20	993,750
01	21,00	14,90	992,803
02	22,50	15,45	992,385

Meteorološke vplive upoštevamo pri izračunu prvega popravka hitrosti, ker je zaradi njih merjena dolžina drugačna od dejanske dolžine med instrumentom in tarčo. Za izračun prvega popravka hitrosti je potrebno izračunati nominalni lomni količnik n_0 :

$$n_0 = 1 + \frac{n_g - 1}{1 + \alpha \cdot t_0} \cdot \frac{p}{1013, 25} - \frac{4,125 \cdot 10^{-8}}{1 + \alpha \cdot t_0} \cdot e_0.$$
(4)

Pri izračunu nominalnega lomnega količnika za instrument Leica Nova MS50 uporabimo referenčne podatke iz Tabele 4.

Tabela 4. Referenčni podatki za tahimeter Leica Nova MS50 (Geoservis, 2015.)

$\lambda_{\scriptscriptstyle Neff}$	t_0	p_0	e_0
0,658 µm	12 °C	1013,25 hPa	60 %

Grupni količnik smo izračunali glede na efektivno valovno dolžino λ_{Neff} :

$$(n_g - 1) \cdot 10^6 = A + 3 \cdot \frac{B}{\lambda_{Neff}^2} + 5 \cdot \frac{C}{\lambda_{Neff}^4}.$$
(5)

Količine A, B in C so empirično določene konstante, ki veljajo za atmosfero z normalnimi pogoji (t = 0°C, p = 1013, 25 hPa, e = 0 hPa). Njihova vrednost je prikazana v Tabeli 5.

Tabela 5. Empirično določene konstante za izračun grupnega lomnega količnika

Avtor	Območje	A	B	С
IAG (1999)	$650nm \leq \lambda_{\scriptscriptstyle Neff} \leq 850nm$	287,6155	1,62887	0,01360

Ker se dejanski meteorološki parametri razlikujejo od referenčnih, je potrebno izračunati dejanski lomni količnik.

$$n_D = 1 + \frac{n_g - 1}{1 + \alpha \cdot t} \cdot \frac{p}{1013, 25} - \frac{4,125 \cdot 10^{-8}}{1 + \alpha \cdot t} \cdot e \,. \tag{6}$$

Prvi popravek hitrosti dobimo po enačbi:

$$D_1 = D_a \cdot \frac{n_0}{n_D} \,. \tag{7}$$
n_{D-} dejanski lomni količnik

 D_a - dolžina popravljena za vpliv pogreška določitve ničelne točke razdaljemera in reflektorja

Za izračun drugega popravka hitrosti moramo prav tako upoštevati meteorološke parametre. Zaradi kratke dolžine (pri dolžinah daljših od 65 kilometerov popravek znaša 1 ppm) je vpliv na dolžino zanemarljiv. Enačbe za izračun drugega popravka hitrosti:

$$D_2 = D_1 + k_{\Delta n} \,. \tag{8}$$

 D_1 – prvi popravek hitrosti in

$$\Delta_{kn} = -(k - k^2) \cdot \frac{D_1^3}{12 \cdot R^2} \,. \tag{9}$$

6.2 Geometrični popravki

Poleg meteoroloških popravkov je bilo potrebno upoštevati tudi geometrične popravke. Izmerjena dolžina je zaradi refrakcije prostorska krivulja in zato moramo izračunati njeno tetivo. Enačba za izračun tetive prostorske krivulje:

$$S_r = D_2 - k^2 \cdot \frac{D_2^3}{24 \cdot R^2}$$
, kjer je (10)

 D_2 – drugi popravek hitrosti

k – koeficient refrakcije (k = 0,13)

R – radij Zemlje (R = 6 370 000 m).

Po izračunani tetivi prostorske krivulje je bilo potrebno upoštevati še višino instrumenta ter višine reflektorjev na vsaki točki. Uporabili smo naslednje enačbe:

$$S_p = S_r - (l-i) \cdot \cos(z_r) + \frac{\left[(i-l) \cdot \sin(z_r)\right]^2}{2 \cdot S_r}, \text{ kjer je}$$
(11)

 S_r – tetiva prostorske krivulje

i – višina instrumenta

l – višina tarče.

Popravek merjene zenitne razdalje z' zaradi refrekcije znaša:

$$z_r = z' + \frac{S_r}{2 \cdot R} \cdot k$$
, kjer je z' – merjena zenitna razdalja. (12)

Vrednost dolžine na nivoju točk, to je kamen – kamen, znaša:

$$S_k = S_p - \frac{i \cdot S_p}{R} \,. \tag{13}$$

6.3 Projekcijski popravki

Z upoštevanjem geometričnih popravkov smo pridobili dolžino na nivoju kamen – kamen (S_k). Pri projekcijskih popravkih to dolžino reduciramo na izbrano referenčno ploskev, da pridobimo sferno dolžino loka *S* s pomočjo naslednje enačbe:

$$S = (R + H_0) \cdot a \tan\left(\frac{S_r \cdot \sin(z_r)}{R + H_A + i + S_r \cdot \cos(z_r)}\right).$$
(14)

 H_0 predstavlja višino računskega nivoja, ki v našem primeru znaša 10 metrov, kar je višina talne stabilne točke O3 v lokalnem koordinatnem sistemu.

6.4 Skenogrami in natančnost skeniranja točk

Za skeniranje smo uporabili instrument Leica Nova MultiStation MS50, ki omogoča direktno pridobitev georeferenciranega oblaka točk. Pred skeniranjem je bilo potrebno v instrument vnesti izmerjene meteorološke parametre, in sicer suho in mokro temperaturo ter zračni tlak. Določiti je bilo potrebno območje skeniranja. Da bi zajeli vse točke, ki se nahajajo na prelivni steni, smo za območje skeniranja vzeli nekaj metrov večje območje okrog prelivne stene (slika 27). Prelivno steno smo v obeh terminskih izmerah skenirali iz stojišč S2, O1 in O2.

Gostoto točk smo nastavili na 3 x 3 centimetre in izbrali hitrost skeniranja 1000 točk na sekundo.

Slika 27. Prikaz izbranega območja skeniranja s stojišča S2 v prvi terminski izmeri dne 21. 04. 2015.

Glede na nastavljeno hitrost skeniranja ter gostoto točk smo pridobili naslednje podatke (tabela 6 in tabela 7).

Tabela 6. Pri	dobljene	velikosti	oblakov	točk in	čas zajema	v prvi	terminski	izmeri	dne 21.	04.2	015.

Skeniranje iz stojišča	Število zajetih točk	Potreben čas zajema
01	590 812	~ 10 minut
02	243 647	~ 5 minut
S2	125 737	~ 10 minut
	$\Sigma = 960 \ 196$	$\Sigma = \sim 25 \text{ minut}$

Skeniranje iz stojišča	Število zajetih točk	Potreben čas zajema
01	358 328	~ 6 minut
02	243 328	~ 5 minut
S2	135 605	~ 10 minut
	$\Sigma = 737\ 261$	$\Sigma = \sim 21 \text{ minuta}$

Tabela 7. Pridobljene velikosti oblakov točk in čas zajema v drugi terminski izmeri dne 10. 07. 2015.

Iz tabel je razvidno, da se velikosti oblakov točk in hitrost zajema med terminskima izmerama razlikujeta. Razlog je v različni velikosti izbranega območja skeniranja okrog prelivne stene hidroelektrarne Melje.

Skenograme iz vseh treh stojišč je bilo potrebno vklopiti v projektni koordinatni sistem. Za orientacijo skenogramov smo izmerili 5 girusov proti ostalim točkam mreže ter izravnane koordinate mikro mreže Melje, ki jih smo jih prikazali v naslednjem poglavju. V nadaljevanju so prikazani skenogrami iz posameznih stojiš.

Slika 28. Skenogram iz stojišča O1 zajet v prvi terminski izmeri dne 21. 04. 2015.

Slika 29. Skenogram iz stojišča O1 zajet v drugi terminski izmeri dne 10. 07. 2015.

Slika 30. Skenogram iz stojišča O2 zajet v prvi terminski izmeri dne 21. 04. 2015.

Slika 31. Skenogram iz stojišča O2 zajet v drugi terminski izmeri dne 10. 07. 2015.

Slika 32. Skenogram iz stojišča S2 zajet v prvi terminski izmeri dne 21. 04. 2015.

Slika 33. Skenogram iz stojišča S2 zajet v drugi terminski izmeri dne 10. 07. 2015.

Iz zgornjih slik je razvidno, da smo s skenogrami iz točk O1 in O2, oziroma iz stojišč, ki sta v neposredni bližini prelivne stene uspešno zajeli vse točke (slika 28, slika 29, slika 30 in slika 31).

Do problema je prišlo pri skeniranju s stojišča S2 (slika 32 in slika 33). Zaradi večje razdalje med stojiščem in prelivno steno se veliko točk zaradi nezadostnega odboja ni posnelo. Na delih stene, ki so pod pravim kotom glede na instrument, je prišlo do pravilnih odbojev, medtem ko smo od prelivne

stene, ki je nagnjena, dobili ustrezen odboj le na nekaj točkah. Glede na oddaljenost stojišča od tarče (130 metrov) in na izbrano hitrost skeniranja (1000 hertzov) lahko trdim, da so te napake v odboju nepričakovane. Proizvajalec Leica Geosystems sicer zagotavlja zadosten odboj pri oddaljenostih do 300 metrov od stojišča v optimalnih pogojih skeniranja.

Slika 34. Združeni skenogrami iz stojišč O1, O2 in S2 v prvi terminski izmeri dne 21. 04. 2015.

Slika 35. Združeni skenogrami iz stojišč O1, O2 in S2 v drugi terminski izmeri dne 10. 07. 2015.

Natančnost skeniranja nam podaja proizvajalec Leica Geosystems (Tabela 8).

Skeniranje	
Hitrost vrtenja s piezo motornimi pogoni	180° / s
	1000 Hz / 300 m / 1.0 mm na razdalji 50 m
	250 Hz / 400 m / 0.8 mm na razdalji 50 m
nitrost / najvecji doseg / sum	62 Hz / 500 m / 0.6 mm na razdalji 50 m
	1 Hz / 1000 m / 0.6 mm na razdalji 50 m
Vizuelizecije	Vgrajen pregledovalnik 3D oblakov točk, tudi s
v izualizacija	foto-realističnim obarvanjem oblakov

Tabela 8. Tehnični podatki o skeniranju instrumenta Leica Nova MultiStation MS50 (Geoservis, 2015)

Glede na izbrano hitrost skeniranja in maksimalno oddaljenost skenerja od prelivne stene, ki znaša 130 metrov, je pričakovana natančnost skeniranja med 2 in 3 milimetre. Iz tabele 8 je razvidno, da z zmanjšanjem hitrosti skeniranja, lahko nekoliko povečamo natančnost skeniranja.

7 IZRAVNAVA GEODETSKE MREŽE

Za določitev stojiščnih in orientacijskih točk za skeniranje, je potrebno izračunati najverjetnejše koordinate točk terestrične mikro mreže Melje s pomočjo posredne izravnave meritev. V izravnavi uporabimo koordinate danih točk (tabela 9), približne koordinate novih točk (tabela 10) ter izračunane sredine girusov in reducirane dolžine (tabela 11 in tabela 12). Izbran je bil lokalni koordinatni sistem, kjer smer osi X horizontalnega koordinatenega sistema predstavlja smer najverjetnejših pričakovanih premikov kontrolnih točk, ki je definirana s smerjo O3 - S2. V višinskem smislu izhodišče predstavlja talna točka O3 [1].

Tabela 9. Koordinate danih točk

Točka	Y [m]	X [m]	h [m]
03	70,0081	238,1196	10,0000
O4	111,2209	246,7633	9,9650

Tabela 10. Približne koordinate novih točk

Točka	Y [m]	X [m]	h [m]
S2	99,9624	244,5430	11,62372
S1	76,4370	239,8970	11,49228
01	88,8120	131,0780	17,16487
02	146,8820	112,7820	18,66792

Tabela 11. Sredine horizontalnih smeri, zenitnih razdalj in reducirane dolžine meritev, ki smo izvajali dne 21.04.2015.

OD	DO	Horizontalna smer [°´´]	Zenitna razdalja [°´´]	Reducirana dolžina [m]
S1	02	0 00 00,00	87 08 10,97	145,3302
S1	01	22 30 22,42	86 58 53,41	109,5188
S1	03	103 41 28,34	103 40 19,73	6,6748
S1	S2	287 49 12,36	90 19 02,92	23,9797
S1	O4	287 47 37,49	92 40 48,38	35,4490
S2	02	0 00 00,00	86 58 14,31	139,8668
S2	01	25 12 46,68	87 02 02,56	114,0103
S2	03	97 31 44,95	92 47 17,57	30,6408
S2	04	278 20 51,47	97 34 43,51	11,4699
S2	S1	98 25 41,54	89 41 08,00	23,9797
01	03	0 00 00,00	93 53 55,43	108,6955
01	S1	3 28 43,69	93 01 24,14	109,5186
01	S2	15 34 45,06	92 58 14,22	114,0102
01	O4	20 55 23,82	93 36 48,84	117,8502
01	02	117 27 25,67	88 35 39,78	60,8846
02	03	0 00 00,00	93 27 58,08	147,0520
02	S1	2 31 38,68	92 52 07,92	145,3297
02	S2	11 55 16,16	93 02 04,42	139,8664
02	04	16 36 55,75	93 41 19,70	138,6667
02	01	319 00 42,26	91 24 35,64	60,8844

OD	DO	Horizontalna smer [°´´]	Zenitna razdalja [°´´]	Reducirana dolžina [m]
S1	02	0 00 00,00	87 03 48,75	145,3373
S1	01	22 30 28,96	86 53 17,21	109,5426
S1	03	103 31 37,49	102 10 26,96	6,7123
S1	S2	287 50 59,92	89 43 51,73	23,9152
S1	04	287 48 40,60	92 23 51,68	35,4433
S2	02	0 00 00,00	86 59 41,77	139,8708
S2	01	25 12 36,87	87 03 57,24	114,0038
S2	03	97 32 18,82	92 55 03,63	30,6121
S2	04	278 21 59,20	97 53 38,72	11,4986
S2	S1	98 29 12,10	90 16 03,93	23,9150
01	03	0 00 00,00	93 53 47,38	108,6969
01	S1	3 29 49,18	93 06 42,40	109,5425
01	S2	15 33 54,79	92 56 02,08	114,0039
01	04	20 55 25,49	93 36 40,24	117,8508
01	02	117 27 20,51	88 35 19,49	60,8836
02	03	0 00 00,00	93 27 53,29	147,0518
02	S1	2 32 37,31	92 56 11,37	145,3371
02	S 2	11 54 35,24	93 00 18,98	139,8709
02	04	16 36 56,65	93 41 16,74	138,6651
02	01	319 00 36,95	91 24 40,90	60,8836

Tabela 12. Sredine horizontalnih smeri, zenitnih razdalj in reduciranih dolžin meritev, ki smo jih izvajali dne 10.07.2015.

7.1 Horizontalna izravnava

Za določitev definitivnih horizontalnih koordinat točk mikro mreže smo uporabili izravnavo po metodi najmanjših kvadratov. Uporabili smo program RamWin (avtorji: T.Ambrožič, G.Turk), ki je prosto dostopen za uporabo.

Vhodna datoteka za program RamWin ima končnico *.pod. Datoteka vsebuje koordinate danih točk, približne koordinate novih točk, opazovanja (horizontalne smeri, reducirane dolžine), podatke o natančnosti opazovanih smeri in dolžin, razdelbo kroga ter natančnost izpisa rezultatov (Priloga C).

Rezultati izravnave so definitivne koordinate novih točk, ocena natančnosti določitve položaja novih točk – natančnost v smeri koordinatnih osi in elipse pogreškov, ter ocena natančnosti meritev (Priloga D).

Dve stabilni točki O3 in O4 določata geodetski datum v terestrični mikro mreži Melje. Natančnost koordinat novih točk je odvisna od natančnosti opazovanj, oblike mreže in vrste opazovanj.

V nadaljevanju podajamo rezultate izravnav dveh terminskih izmer (tabela 13 in tabela 14) ter grafično prikažemo doseženo natančnost s pomočjo standardnih elips pogreškov (slika 36 in slika 37). Za prikaz standardnih elips pogreškov smo uporabili program DemoGem, ki je dostopen za uporabo le na Fakulteti za gradbeništvo in geodezijo (avtorji: T.Ambrožič, G.Turk, Z.Jamšek).

rubbiu 15. Eruvitaite norizontalite koordinate iz mentev 21. 01. 2015.								
Točka	Y [m]	X [m]	My [m]	Mx [m]	Mp [m]	a [m]	b [m]	Θ [°]
S2	99,9711	244,5257	0,0003	0,0001	0,0003	0,0003	0,0000	78
S1	76,4465	239,8808	0,0003	0,0001	0,0003	0,0003	0,0000	76
01	88,8135	131,0627	0,0004	0,0003	0,0005	0,0004	0,0003	96
02	146,8817	112,7603	0,0005	0,0003	0,0006	0,0005	0,0003	71

Tabela 13. Izravnane horizontalne koordinate iz meritev 21. 04. 2015.

Slika 36. Prikaz geodetske mreže in standardnih elips pogreškov prve terminske izmera dne 21. 04. 2015

Iz pridobljenih parametrov absolutnih elips pogreškov na osnovi meritev, ki smo jih opravljali 21. 04. 2015, lahko sklepamo, da je natančnost koordinat geodetske mreže pričakovano visoka. Tako visoko natančnost smo pridobili zaradi ustrezne izbire instrumentarija in merske opreme ter načina opravljanja meritev. Merili smo v 7 girusih v obeh krožnih legah obojestransko med točkami S1, S2, O1 in O2 ter enostransko na talni točki O3 in O4.

Turčić, M. 2015. Terestrično lasersko skeniranje prelivne stene MHE Melje za izračun deformacij. Dipl. nal. Ljubljana, UL FGG, Univerzitetni študijski program I. stopnje Geodezija in geoinformatika.

Točka	Y [m]	X [m]	My [m]	Mx [m]	Mp [m]	a [m]	b [m]	Θ [°]
S2	99,9427	244,5212	0,0004	0,0001	0,0005	0,0004	0,0001	78
S1	76,4782	239,9075	0,0004	0,0001	0,0005	0,0004	0,0000	76
01	88,8162	131,0617	0,0006	0,0004	0,0007	0,0006	0,0004	96
02	146,8843	112,7626	0,0006	0,0004	0,0008	0,0007	0,0004	71

Tabela 14. Izravnane horizontalne koordinate iz meritev 10. 07. 2015.

Slika 37. Prikaz geodetske mreže in standardnih elips pogreškov druge terminske izmere dne 10. 07. 2015

Iz pridobljenih parametrov absolutnih elips pogreškov na osnovi meritev, ki smo jih opravljali 10. 07. 2015, lahko sklepamo, da je natančnost koordinat geodetske mreže, ne glede na to, da je nekoliko slabša kot v prvi izmeri, pričakovano visoka. Tako visoko natančnost smo pridobili zaradi ustrezne izbire instrumentarija in merske opreme ter načina opravljanja meritev. Merili smo v 7 girusih v obeh krožnih legah na enak način kot v prvi izmeri. Na slabšo natančnost meritev so vplivale nekoliko slabše atmosferske razmere.

Na osnovi prve terminske izmere dne 21. 04. 2015 smo definirali geodetski datum horizontalne in višinske mreže ter določili najverjetnejše koordinate točk v mikro mreži Melje. Na osnovi druge terminske izmere dne 10. 07. 2015 smo ob uporabi identičnega geodetskega datuma ugotavljali stabilnost referenčnih točk in določili projektni koordinatni sistem skenogramov.

7.2 Višinska izravnava

Pri višinski izravnavi smo uporabili program VimWin in vhodno datoteko s končnico *.pod (Priloga E). Datoteka vsebuje podatke o številu izpisa decimalnih mest, seznamu višin danih reperjev ter približnih višin novih reperjev, utežni enoti ter seznamu opazovanj (višinska razlika in poševna razdalja). Rezultati izravnave so definitivne višine novih točk, popravek višine ter srednji pogrešek višine (Priloga D).

Višinske razlike smo računali po enačbi:

$$\Delta h_a^b = S_k \cdot \cos(z_{k_a}^b) + \frac{S_k^2}{2 \cdot R} \cdot (1 - k) \cdot \sin(z_{k_a}^b), \text{ kjer je}$$
(19)

 S_k – vrednost dolžine na nivoju točk (kamen - kamen)

R – radij Zemlje (R = 6 370 000 m)

k – koeficient refrakcije (k = 0,13)

 z_{k}^{b} - merjena zenitna razdalja s točke *a* na točko *b*.

Tabela 15. Izravnane višine točk prve terminske izmere dne 21. 04. 2015.

Reper	Približna	Popravek	Definitivna	Srednji pogrešek	
	višina [m]	višine [m]	višina [m]	višine [m]	
01	17,1604	0,00188	17,16228	0,00050	
02	18,6601	0,00090	18,66100	0,00053	
S1	11,5150	-0,06719	11,44781	0,00022	
S2	11,4960	0,06363	11,55963	0,00026	

Tabela 16. Izravnane višine točk druge terminske izmere dne 10. 07. 2015.

Reper	Približna	Popravek	Definitivna	Srednji pogrešek	
	višina [m]	višine [m]	višina [m]	višine [m]	
01	17,16228	-0,00033	17,16195	0,00037	
02	18,66100	-0,00045	18,66055	0,00040	
S1	11,44781	0,00004	11,44785	0,00019	
S2	11,55963	0,00004	11,55967	0,00022	

Iz pridobljenih rezultatov, prikazanih v tabelah (tabela 15 in tabela 16) sklepamo, da je natančnost višinske geodetske mreže pričakovano visoka. Tako visoko natančnost smo pridobili zaradi ustrezne izbire instrumentarija in merske opreme ter načina opravljanja meritev. Merili smo v 7 girusih v obeh krožnih legah obojestransko med točkami S1, S2, O1 in O2 ter enostransko na talni točki O3 in O4.

8 IZRAČUN DEFORMACIJ PRELIVNE STENE MHE MELJE

Za skeniranje smo uporabili instrument Leica Nova MultiStation MS50, ki omogoča direktno pridobitev georeferenciranega oblaka točk. Skenograme iz vseh treh stojišč smo vklopili v projektni koordinatni sistem oziroma na izravnano mikro mrežo male hidroelektrarne Melje v posamezni terminski izmeri. Instrument smo prisilno centrirali na točke mreže. Za orientacijo smo izmerili 5 girusov proti ostalim točkam mreže.

Pri izračunu deformacij prelivne stene smo uporabljali dva podobna odprto kodna programa, in sicer MeshLab in Cloud Compare.

MeshLab je računalniški program za obdelavo oblakov točk, ki uporabniku pomaga pri čiščenju, filtriranju, popravljanju in pridobitvi nestrukturiranih 3D trikotniških mrež. Orodje se večinoma uporablja za osnovno uporabo na trikotniških mrežah, ki so bile posnete s 3D skeniranjem. Program vsebuje številne opcije med katerimi smo mi uporabili opcijo "Freeze Current Matrix", s katero smo zamrznili matriko poljubnega sektorja prve terminske izmere, da bi med uporabo ostalih funkcij osnovni podatki ostali nespremenjeni. Z opcijo "Define New Per Vertex Attribute" smo definirali vrednost, katero bomo izračunali. Uporabili smo tudi opcijo "Hausdorff Distance", katera določa oddaljenosti med oblakoma točk ter izpiše minimalne, maksimalne in srednje vrednosti razdalj med oblakoma točk in opcijo "Quality Mapper" za določanje barv posameznemu sektorju poljubnega oblaka točk. Na koncu smo uporabili opcijo "Show Quality Histogram" za izris barvnega histograma za vrednost, ki smo je definirali s funkcijo, Define New Per Vertex Attribute".

Cloud Compare je 3D program, s katerim obdelujemo oblak točk. Glavni namen programa je primerjava dveh 3D oblakov točk ali primerjava oblaka točk in trikotniške mreže. Njegova specifična octree struktura omogoča izjemne možnosti v svojih posameznih funkcijah (slika 38).

Slika 38. Razlaga octree strukture (<u>http://www.jara.org</u>, 2015.)

Orodje omogoča obdelavo do 120 milijonov točk in do 2 gigabajtov podatkov. Splošni dodatek, ki ga program vsebuje, omogoča obdelavo oblaka točk s številni algoritmi za registracijo, statistično obdelavo, upravljanje s senzorji, interaktivno ali avtomatsko segmentacijo in ostale. Pri izračunu deformacij smo uporabili opcijo "Merge Multiple Clouds", katera omogoča združitev več oblakov točk v enega samega in opcijo "Segment", s katero odstranimo neuporabne, moteče, slučajno zajete točke. Uporabili smo tudi opcijo "Cross Section" pri izdelavi sektorjev, ki so prikazani v nadaljevanju ter na koncu opcijo "Cloud/Cloud Dist.", s katero smo določali vertikalne, poševne in ostale oddaljenosti med oblakoma točk.

Odločili smo se, da bomo prelivno steno razdelili na kvadre enakih velikosti, in sicer 5 x 10 x 2,5 metra. Na ta način smo dobili 32 sektorjev (Slika 39).

18.00 m									1
15.50 m	SEKTOR 25	SEKTOR 26	SEKTOR 27	SEKTOR 28	SEKTOR 29	SEKTOR 30	SEKTOR 31	SEKTOR 32	
13.00 m	SEKTOR 17	SEKTOR 18	SEKTOR 19	SEKTOR 20	SEKTOR 21	SEKTOR 22	SEKTOR 23	SEKTOR 24	
10.50 m	SEKTOR 9	SEKTOR 10	SEKTOR 11	SEKTOR 12	SEKTOR 13	SEKTOR 14	SEKTOR 15	SEKTOR 16	
8.00 m	SEKTOR 1	SEKTOR 2	SEKTOR 3	SEKTOR 4	SEKTOR 5	SEKTOR 6	SEKTOR 7	SEKTOR 8	Z
	135.00 m	130.00 m	125.00 m	120,00 m 1	15.00 m	110.00 m	105.00 m	100.00 m 🗸 95	5.00 m

Slika 39. Razdelitev prelivne stene na sektorje

Za izdelavo sektorjev smo uporabili opcijo "Cross Section". Kvadre dimenzij 5 x 10 x 2,5 metra je bilo potrebno raztegniti v smeri pravokotno na prelivno steno, tako da v nadaljevanju lahko izračunamo in prikažemo deformacije prelivne stene (slika 40). Zaradi nagnjenosti stene smo za tretjo dimenzijo kvadra vzeli 10 metrov in s tem zagotovili, da v smeri te dimenzije zajamemo vse točke.

Slika 40. Prikaz izdelave sektorja 12

Ogljišča kvadra 12	x [m]	y [m]	z [m]					
1	120,00	102,00	10,50					
2	115,00	102,00	10,50					
3	115,00	102,00	13,00					
4	120,00	102,00	13,00					
5	120,00	112,00	10,50					
6	115,00	112,00	10,50					
7	115,00	112,00	13,00					
8	120,00	112,00	13,00					

Tabela 17. Primer: koordinate ogljišč kvadra/sektorja 12

Deformacije prelivne stene smo izračunali v programu MeshLab s pomočjo opcije "Hausdorff Distance", ki omogoča izračun vertikalnih, poševnih in ostalih oddaljenosti med oblakoma ter izpisuje minimalne, maksimalne in srednje vrednosti razdalj med oblakoma. Pred izračunom z opcijo "Hausdorff Distance" smo poskušali izbrisati vse točke, ki se ne nahajajo na prelivni steni oziroma so izven definiranih 32 sektorjev. Za neodvisno kontrolo smo izračun razdalj naredili tudi s programom Cloud Compare in opcijo "Cloud/Cloud Dist.". Rezultati izračuna s programom MeshLab so prikazani v Tabeli 18.

Tabela 18. Izračunane min	imalna in maksimalna	razdalja ter srednja	vrednost	oddaljenosti	med o	lvema
terminskima izmerama za	posamezne sektorje					

PRIMERJAVA DVEH SKENOGRAMOV – IZRAČUN DEFORMACIJ							
SEKTOR	Maksimalna razdalja	Srednja vrednost	RMS (o)	Srednja vrednost [m] /			
	[m]	[m]		RMS (σ)			
1	0,0499	0,0039	0,0081	0,5			
2	0,0342	0,0027	0,0030	0,9			
3	0,0128	0,0018	0,0020	0,9			
4	0,0400	0,0026	0,0046	0,6			
5	0,0162	0,0018	0,0020	0,9			
6	0,0075	0,0015	0,0017	0,9			
7	0,0195	0,0026	0,0030	0,9			
8	PRAZEN KVADER						
9	0,0489	0,0033	0,0058	0,6			
10	0,0163	0,0021	0,0023	0,9			
11	0,0072	0,0014	0,0016	0,9			
12	0,0062	0,0017	0,0019	0,9			
13	0,0071	0,0017	0,0018	0,9			
14	0,0038	0,0014	0,0015	0,9			
15	0,0522	0,0013	0,0015	0,9			
16	PRAZEN KVADER						
17	PRAZEN KVADER						
18	0,0187	0,0041	0,0044	0,9			
19	0,0125	0,0016	0,0018	0,9			
20	0,0142	0,0017	0,0019	0,9			
21	0,0065	0,0018	0,0019	0,9			
22	0,0058	0,0016	0,0017	0,9			
23	0,0069	0,0015	0,0016	0,9			
24	0,0096	0,0028	0,0030	0,9			
25	PRAZEN KVADER						
26	PRAZEN KVADER						
27	0,0477	0,0027	0,0038	0,7			
28	0,0180	0,0023	0,0026	0,9			
29	0,0168	0,0024	0,0027	0,9			
30	0,0123	0,0022	0,0025	0,9			
31	0,0252	0,0026	0,0038	0,7			
32	0,0454	0,0039	0,0073	0,5			

Maksimalna razdalja predstavlja največjo razdaljo med skenogramoma, ki jo je program zaznal. Srednja vrednost je določena kot kvocient seštevka vseh vrednosti razdalj med točkami v posameznem sektorju in številom točk v sektorju. RMS (Root Mean Square) predstavlja statistično mero razpršenosti opredeljeno kot kvadratni koren povprečja kvadratov vzorca. Zadnji stolpec podaja razmerje med srednjo vrednostjo oddaljenosti in RMS, iz katerega lahko sklepamo o značilnih premikih. Glede na to, da so vse vrednosti v zadnjem stolpcu manjše od 1, sklepamo, da je razpršenost večja od premika. Če bi bila vrednost večja od 2 ali 3, bi lahko trdili, da je prišlo do značilnega premika.

Iz tabele 17 je razvidno, da smo dobili najslabše natančnosti (največji RMS) za odseke (sektorji 1, 9 in 18), ki se nahajajo na robovih prelivne stene. Do slabih rezultatov pride zaradi točk, ki ne pripadajo prelivni steni, ampak jih je instrument vseeno zajel. Slabi rezultati so tudi posledica neizkušnje pri obdelavi oblaka točk, še posebej na robovih objekta. Na sliki 35 prikazan grafični prikaz oddaljenosti med skenogramoma na enem od problematičnih robnih sektorjev. Na vrhu prelivne stene (sektorji 27, 28, 29, 30, 31 in 32) smo imeli enak problem, ker prelivna stena spreminja obliko iz ravne v zavito ploskev. Slika 42 prikazuje sektor, kjer stena spreminja obliko. Ostali sektorji imajo razpršenosti nekaj večje kot je podana natančnost skeniranja proizvajalca Leica Geosystems. Glede na pridobljene rezultate, ki smo jih izpisali v tabeli 17, sklepamo, da metoda terestričnega laserskega skeniranja glede na uporabljeno mersko opremo, gostoto zajema skeniranih točk in metodologijo obdelave skenogramov ni dovolj natančna metoda za izračun deformacij objektov, za katere je zahtevana visoka natančnost v rangu milimetrov.

Za grafični prikaz oddaljenosti med oblakoma smo uporabili program MeshLab, ker ponuja lepšo grafiko. Izbrali smo dva poljubna sektorja ter zanju z barvo prikazali različne oddaljenosti med njima (slika 41 in slika 42).

Slika 41. Grafični prikaz oddaljenosti dveh skenogramov v sektorju 5

Tabela 19. Podatki o oddaljenosti med skenogramoma v sektorju 5

Max	0,0162
Mean	0,0018
RMS	0,0020
Srednja vrednost [m] / RMS (σ)	0,9

Grafika vsebuje skalo, ki gre od 0 do 16,2 milimetrov. Večina točk ima oddaljenost med vrednostmi 0 in 4 milimetrov (modra in rumena barva). Največja razdalja med oblakoma znaša 1,6 centimetrov, vendar se zaradi majhnega števila takšnih točk na histogramu ne opazijo. Iz Tabele 19 je razvidno, da smo za srednjo vrednost oddaljenosti dveh skenogramov dobili slaba dva milimetra. Pridobljena natančnost se sklada z deklarirano natančnostjo proizvajalca. Glede na to, da se sektor 5 nahaja na spodnjem robu prelivne stene, sklepamo, da smo pridobili korektne rezultate.

Slika 42. Grafični prikaz oddaljenosti dveh skenogramov v sektorju 20

Tabela 20. Podatki o oddaljenosti med skenogramoma v sektorju 2	oma v sektorju 20
---	-------------------

Max	0,0142
Mean	0,0017
RMS	0,0019
Srednja vrednost [m] / RMS (σ)	0,9

Grafika vsebuje skalo, ki gre od 0 do 13 milimetrov. Večina točk ima oddaljenost med vrednostmi 0 in 3 milimetre (modra in rumena barva). Največja razdalja je 1,2 centimetra, vendar se zaradi majhnega števila takšnih točk na histogramu ne opazijo. Sektor 20 se nahaja na vrhu prelivne stene, kjer prelivna stena spreminja obliko iz ravne v zavito ploskev. Zaradi tega smo v sektorju 20 za srednjo vrednost oddaljenosti dveh skenogramov pridobili rezultat velikosti 1,7 milimetrov (tabela 20). Pridobljena natančnost se sklada z deklarirano natančnostjo proizvajalca. Glede na položaj na prelivni steni male hidroelektrarne Melje sklepamo, da smo pridobili korektne rezultate.

9 ZAKLJUČEK

V diplomski nalogi je predstavljena uporaba tehnologije terestričnega laserskega skeniranja na primeru prelivne stene male hidroelektrarne Melje z namenom ugotavljanja deformacij.

Prednosti terestričnega laserskega skeniranja so, da pri uporabi metode ni bilo potrebno priti v neposredni stik s prelivno steno. Skener je v kratkem času posnel zelo gosto mrežo točk s 3D koordinatami. Natančnost, ki jo ponuja terestrično lasersko skeniranje je za številne geodetske naloge ustrezna, ni pa primerljiva z najnatančnejšimi geodetskimi metodami določanja 3D koordinat točk. Podatke smo obdelali z dvema računalniškima programoma, ki sta prosto dostopna na internetu. Opisan je tudi postopek obdelave podatkov z uporabo programov CloudCompare in MeshLab. Z uporabo terestričnega laserskega skeniranja smo pridobili podroben prikaz posnetega območja.

Namen diplomske naloge je bil preučiti primernost uporabe tehnologije laserskega skenerja za ugotavljanje premikov. Ob izdelavi diplomske naloge sem se spoznal z vsemi fazami terestričnega laserskega skeniranja, in sicer: terenskimi meritvami, združitvijo skenogramov ter obdelavo oblaka točk. Terenske meritve smo opravljali skupaj s študenti druge stopnje študijskega programa Geodezija in geoinformatika Fakultete za gradbeništvo in geodezijo, obdelavo podatkov pa sem izvedel samostojno s pomočjo nasvetov mentorice in somentorja.

Osnovni cilj diplomske naloge je bil testiranje novega instrumenta Leica Nova MultiStation MS50 ter izračun deformacij prelivne stene male hidroelektrarne Melje na osnovi laserskega skeniranja. Ugotovimo lahko, da je postopek laserskega skeniranja z omenjenim instrumentom na terenu hiter in enostaven, saj omogoča direktno georeferenciranje oblaka točk, kar pri klasičnih skenerjih predstavlja določen problem. Za obdelavo oblakov točk so na voljo številni prosto dostopni programi, katerih zanesljivost rezultatov je potrebno podrobno testirati. Izbrana programaCloudCompare in MeshLab omogočata obdelavo oblaka točk in izdelavo 3D modela, vendar je za zanesljive rezultate potrebno imeti veliko izkušenj.

Testirali smo hipotezo ali je metoda terestričnega laserskega skeniranja ob uporabi merskega instrumenta Leica Nova Multistation MS50 primerna za ugotavljanje premikov in prišli do nekaterih ugotovitev.

- Srednja vrednost oddaljenosti med dvema terminskima izmerama za celotno prelivno steno znaša 2,2 milimetra, srednja vrednost statistične mere razpršenosti (RMS) pa 2,9 milimetrov, kar je skladno s podanimi tehničnimi specifikacijami instrumenta glede dosegljive natančnosti skeniranja na določenih razdaljah. Iz tega lahko sklepamo, da so premiki prelivne stene male hidroelektrarne Melje majhni in niso statistično značilni.
- Na osnovi meritev z instrumentom Leica Nova Multistation MS50 in rezultatov obdelave oblaka točk lahko sklepamo, da za zadovoljive rezultate stojišče, iz katerega izvajamo meritve, ne sme biti od skeniranega objekta oddaljeno več kot 100 metrov.
- Zaradi omejene natančnosti z metodo skeniranja ni mogoče zaznati zelo majhnih premikov objekta velikostnega reda milimetra.

Zaključim torej lahko, da z uporabljeno metodologijo ne moremo zaznati premikov manjših od ~5 mm. Na obravnavanem primeru nismo zaznali premikov tudi zato, ker se prelivna stena dejansko ne premika, kar se v dveh izmerah na leto ugotavlja tudi s klasičnimi terestričnimi metodami izmere. Postopek primerjave oblakov točk temelji na računanju razdalj med posameznimi točkami oblaka, ki imajo relativno slabo položajno natančnost. Premike bi določili natančneje, če bi iz velike množice skeniranih točk izravnali parametre geometrijskih oblik, ki bi imeli, zaradi velike nadštevilnosti, visoko natančnost.

Za prihodnost predlagam, da skeniranje opravimo iz več kot 3 stojišč. Predlagam tudi, da se zmanjša hitrost skeniranja in poveča gostota skeniranih točk, saj bi tako pridobili natančnejše rezultate. Za obdelavo oblakov točk si je potrebno vzeti dovolj časa ter pazljivo odstraniti vse točke, ki se ne nahajajo na prelivni steni in niso njen del. Le na tak način bi pridobili bolj natančne in zanesljive rezultate.

VIRI

- [1] Savšek S., Kogoj D., Ambrožič T., Kregar K., Štebe G.2014. Poročilo o specialnih geodetskih meritvah v območju sidra S2 na jezu Melje, 7. Geodetska izmera horizontalnih in vertikalnih premikov geodetskih točk. Ljubljana, 30 str.
- [2] Vodopivec F., Kogoj D. 2005. Nov način precizne stabilizacije geodetskih točk za opazovanje premikov, Geodetski vestnik (25.feb.2005) 49, str. 9 17.
- [3] Hostnik, A. 2013. Analiza postopkov obdelave podatkov terestričnega laserskega skeniranja v programu RiSCAN PRO. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Oddelek za geodezijo (samozaložba A. Hostnik): 66 str.
- [4] Kogoj, D. 2005. Merjenje dolžin z elektronskimi razdeljemeri. 1. izdaja. 2. natis. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Oddelek za geodezijo: 159 str.
- [5] Opravš, P. 2008. Postopek in natančnost tehnologije 3R terestričnega laserskega skeniranja. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo (samozaložba P. Opravš): 102 str.
- [6] Vosselman, G., Maas, H-G. 2010. Airborne and terrestrial laser scanning. Dunbeath, Whittles Publishing: 320 str.
- [7] Kastelic, M. 2010. Obdelava podatkov laserskega skeniranja v programu Geomagic na primeru Mislejevega portala. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo (samozaložba M. Kastelic): 95 str.

Ostali viri

Kolenc, R. 2004. Terestrično 3D lasersko skeniranje. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo: str. 93 str.

Jenič M., Pavelić F., Spreicer M. 2015. Geodetska izmera deformacij prelivne stene male hidroelektrarne Melje. Tehnično poročilo. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Oddelek za geodezijo: 44 f.

Konič, S. 2008. Prispevek k preverjanju zdrsa skalnega bloka z modelom medsebojne preslikave oblakov točk. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Naravoslovnotehniška fakulteta (samozaložba S. Konič): 115 str.

Mala hidroelektrarna Melje. 2014. https://sl.wikipedia.org/wiki/Mala_hidroelektrarna_Melje (Pridobljeno 30.06.2015.)

Projekt prenove male hidroelektrarne Melje. 2014. http://www.energetika-portal.si/novica/n/projekt-prenove-hidroelektrarne-zlatolicje-jezu-melje-inizgradnje-male-hidroelektrarne-melje-je-z/ (pridobljeno 07.07.2015.)

Mala hidroelektrarna Melje. 2014. http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/Mala-HE-Melje (pridobljeno 07.07.2015.)

Pravilnik o tehničnem opazovanju visokih jezov. 1966. http://www.e-konstrukcije.si/user_files/vsebina/Zakonodaja/SFRJ_66_7_81.pdf (pridobljeno 07.07.2015.)

Zakon o varstvu okolja. 2006. http://www.uradni-list.si/1/objava.jsp?sop=2006-01-1682 (pridobljeno 07.07.2015.)

Precizna stabilizacija geodetskih točk. 2005. http://www.geodetski-vestnik.com/49/1/gv49-1_009-017.pdf (pridobljeno 08.07.2015.)

Tehnični podatki o Leica Nova MultiStation MS50. 2015. http://www.geoservis.si/produkti/64-tahimetri-za-geodezijo-in-inzenirsko-geodezijo/244-leica-nova-ms50-multistation (pridobljeno 08.07.2015.)

Tehnični podatki o reflektorjih Leica GPH1P. 2015. http://www.leica-geosystems.com/en/Surveying-Prisms_1770.htm (pridobljeno 08.07.2015.)

Trigonometrično višinomerstvo. 2015. http://www.fgg.uni-lj.si/~/mkuhar/Pouk/Gradb/Tv/trig_vis.html (pridobljeno 20.07.2015.)

Program MeshLab. 2015. https://en.wikipedia.org/wiki/MeshLab (pridobljeno 24.08.2015.)

Program MeshLab. 2015 http://www.stefanocostanzo.net/g3d/comparison/ (pridobljeno 24.08.2015.)

Program Cloud Compare. 2015. https://en.wikipedia.org/wiki/CloudCompare (pridobljeno 24.08.2015.) »Ta stran je namenoma prazna.«

SEZNAM PRILOG

Priloga A. Vhodna datoteka za izračun sredin girusov (HE MELJE-turcic.fld)	A1
Priloga B. LisCad poročilo o sredinah girusov (LisCad report-21.5- pravi.txt)	B1
Priloga C. Vhodna datoteka za položajno izravnavo (položaj.pod)	C1
Priloga D. Poročilo položajne izravnave programa RamWin (položaj.rez)	D1
Priloga E. Vhodna datoteka za višinsko izravnavo (višina.pod)	E1
Priloga F. Poročilo višinske izravnave programa VimWin (višina.rez)	F1

»Ta stran je namenoma prazna.«

PRILOGA A: VHODNA DATOTEKA ZA IZRAČUN SREDIN GIRUSOV (MELJE.fld) – prva terminska izmera 21. 04. 2015.

2 011 Tuesday, May 19, 2015 4 053 M 5 021 Xr 900 062 03 70.0081 238.1196 10.0000 902 062 01 88.8150 131.0625 17.1604 903 062 02 14.8.8351 12.7.614 18.6601 904 062 21 76.4460 239.820 11.5150 905 062 22 9.9.9720 244.5260 11.4560 709 111 02 0.001520 96.818210 145.511 000000000 8111 02 0.001520 96.818210 145.511 000000000 81 111 02 1.00125710 23.7789 000000000 81 111 03 115.214370 115.191720 6.6694 000000000 81 111 03 115.214370 137.01455.112 000000000 81 111 02 10.01550 33.181730 145.5112 000000000 81 11 02 0.001590 33.181730 145.5112 000000000 91 111 02 0.001590 33.181730 145.5112 000000000 91 111 02 0.001590	1	010 MS50 HE ME	LJE.txt	
3 051 GR 4 053 M 5 021 XY 900 062 03 70.0081 238.1196 10.0000 901 062 01 88.8150 131.0625 17.1564 903 062 02 146.8835 112.7614 18.6601 904 062 21 76.4406 239.8820 11.4550 905 062 82 99.9720 244.5260 11.4560 901 11 02 0.001520 96.818210 145.5111 000000000 901 11 02 13.15.214370 115.19720 6.66494 000000000 901 111 02 13.9.71660 102.977393 03.4477 000000000 811 02 119.774610 22.79739 03.5477 000000000 82 111 03 135.213850 244.69450 6.6695 000000000 84 111 02 20.001520 33.181730 145.5111 000000000 85 111 03 135.213850 244.69450 6.6695 000000000 86 111 02 20.00150 33.181730 145.5111 000000000 9111 02 1.001520 96.81320 145.5111 000000000 9111 03 135.213490 244.69450 6.6695 000000000 9111 03 135.213490 244.69450 6.6695 000000000 9111 03 135.213490 244.69560 6.6695 0000000000	2	011 Tuesday, May	19, 2015	
4 053 M 900 062 03 70.0081 238.1196 10.0000 900 062 04 111.2209 246.7633 9.9650 902 062 01 88.8150 131.0625 17.1604 904 062 21 7.64460 239.8820 11.5150 905 062 22 9.9.9720 244.5260 11.4560 500 101 S1 0 6 160 4 14 0 78 111 C2 0.001520 96.818210 145.5111 000000000 80 111 C3 15.214370 115.191720 6.6694 000000000 81 111 C4 13.771460 102.973180 35.4875 000000000 81 111 C4 13.771460 13.013180 51.4477 000000000 81 111 C2 20.001520 96.618320 145.5111 000000000 81 111 C2 0.001520 96.618320 145.5111 000000000 91 111 C3 13.214380 115.1940 64.6580 109.6703 9111 C1 25.008210 96.645800 <td>3</td> <td>051 GR</td> <td></td> <td></td>	3	051 GR		
5 021 A1 900 062 03 70.0081 238.1196 10.0000 901 062 061 111.2209 246.7633 9.9650 903 062 00 00	4	053 M		
500 602 604 111.2002 246.753 15.6000 902 662 01 88.8150 131.0625 17.1664 903 662 02 146.835 112.7164 18.6601 904 062 81 76.4460 239.8820 11.5150 905 062 29.9.9720 244.5260 11.4960 3000000000 901 11 01 25.008310 96.645890 109.6703 000000000 80 111 01 25.008310 96.645890 19.6703 000000000 81 11 01 25.108576 03.35270 23.9780 000000000 81 11 02 210.01520 96.645800 19.6703 000000000 81 11 02 20.001520 96.645800 19.511 000000000 81 11 02 20.001520 96.645800 19.6703 000000000 91 11 01 21.51380 24.809560 6.8	5	021 XY 062 03 70 0081	228 1196 10 0000	
902 042 01 68.8150 131.0625 17.1604 903 062 02 146.8835 112.7614 18.6601 904 062 81 76.4460 239.8820 11.5150 905 062 82 99.9720 244.5260 11.4960 907 111 01 25.008310 96.645890 109.6703 000000000 901 111 02 15.9726 6.6694 000000000 81 111 03 115.214370 115.191720 6.6694 000000000 82 111 04 119.77160 102.778390 35.4877 000000000 83 111 03 315.213850 244.89450 6.8695 000000000 84 111 02 200.01520 96.81820 145.5111 000000000 85 111 01 25.008210 66.45800 109.6773 000000000 91 111 02 115.214480 15.19200 6.	901	062 04 111.2209	246.7633 9.9650	
903 062 02 146.8835 112.7614 18.6601 904 062 82 99.9720 244.5260 11.4960 905 062 82 99.9720 244.5260 11.4960 906 110 0 0 0 0 9111 0.01520 96.818210 145.5111 000000000 80 111 0.25.008310 96.645801 09.6703 000000000 81 111 0.315.21470 115.191720 6.8695 000000000 82 111 0.4139.771660 102.978390 54.875 000000000 83 111 0.215.01520 96.818320 145.5111 000000000 84 111 0.225.008760 303.35560 199.6703 000000000 9111 0.152.01820 96.645800 199.6703 000000000 9111 0.25.008210 96.645800 199.6703 000000000 9111 0.21.21430 115.121400 15.5111 000000000 <	902	062 01 88.8150	131.0625 17.1604	
904 062 81 76.4460 29.9820 11.5150 500 101 22.99.9720 244.5200 11.4960 500 101 0 0 0 78 111 0.2 0.001620 96.818210 145.5111 000000000 81 11 0.2 0.00810 66.64580 10.97730 0.00000000 82 111 0.4 319.71660 102.97830 35.4875 000000000 83 111 0.4 319.771660 102.977830 35.4875 000000000 84 111 0.3 315.213850 244.809450 6.8695 000000000 85 111 0.2 2.00.01520 96.818320 145.5111 000000000 86 111 0.2 0.001520 96.643500 109.6703 000000000 9111 0.2 0.001190 6.81820 145.5111 000000000 9111 0.3 315.213490 24.809560 6.8695 000000000	903	062 02 146.8835	5 112.7614 18.6601	
905 062 82 99.9720 244.5260 11.4960 500 100 \$1 0 \$1 0 6 160 4 14 0 78 111 01 25.008310 96.645890 109.6703 000000000 60 111 02 319.71660 102.978390 35.4877 000000000 81 111 04 319.771660 102.978390 35.4877 000000000 81 111 02 319.601550 30.3181730 145.5112 000000000 81 111 02 20.001550 33.181730 145.5111 000000000 91 111 01 21.514300 115.19209 6.6855 000000000 91 111 02 119.771560 02.97779 35.4877 000000000 92 111 03 315.21490 24.489550 6.6855 000000000 93 111 04 119.771560 02.97779 3	904	062 S1 76.4460	239.8820 11.5150	
	905	062 S2 99.9720	244.5260 11.4960	
	500	101		
30 111 31 21 30 30 30 30 30 30 30 30 111 31 315 213 315 400 300000000 31 111 3115 213798 $3000000000000000000000000000000000000$	6 78	160 4 111		0000000000
60 111 32 15 15 15 21 23 39 $000000000000000000000000000000000000$	79	111	01 25.008310 96.645890 109.6703	00000000000
111 12 21.9.801850 100.352710 23.9798 000000000 111 04 119.771261 02.978330 35.4875 000000000 84 111 52 119.80220 299.647030 23.9800 000000000 85 111 03 315.213850 244.809450 6.8695 000000000 86 111 02 225.008760 33.353560 109.6703 000000000 97 111 02 2.001520 96.818320 145.5112 000000000 98 111 04 315.71380 102.977790 35.4875 000000000 91 111 52 318.800610 102.977790 35.4875 000000000 92 111 04 315.713490 23.9801 000000000 93 111 02 21.008330 33.35340 109.6703 000000000 93 111 02 25.00830 33.81730 145.5112 000000000 94 111	80	111	03 115.214370 115.191720 6.8694	0000000000
22 111 04 $319,771660$ $122,772330$ $35,4875$ 00000000 83 111 04 $119,702410$ $23,9800$ 000000000 85 111 03 $315,213850$ $284,809450$ $6,8695$ 000000000 86 111 01 $225,008760$ $303,353560$ $109,6730$ 000000000 87 111 02 $2000,01520$ $96,818320$ $145,5111$ 000000000 90 111 02 0.001520 $96,818320$ $145,5111$ 000000000 91 111 02 $100,97790$ 54875 0000000000 91 111 04 $119,771560$ $022,9764735$ $23,9801$ 000000000 91 111 02 $200,01730$ $303,18140$ $145,5112$ 000000000 96 111 01 $225,00850$ $32,8475$ 000000000 97 111 02 $200,01730$ $303,18140$ $145,5111$	81	111	s2 319.801850 100.352710 23.9798	0000000000
83 111 04 119.772410 297.621380 35.4877 00000000 84 111 52 119.802320 299.647030 23.9800 000000000 85 111 01 225.008760 303.353560 19.6703 000000000 86 111 02 20.001550 303.181730 145.5112 000000000 90 111 01 25.008210 96.645800 109.6704 000000000 90 111 03 115.214380 115.19209 68.695 000000000 91 111 52 119.801610 100.353040 23.9799 000000000 93 111 04 119.773500 102.877790 35.4875 000000000 93 111 03 115.214380 144.805560 6.8659 000000000 94 111 02 10.01173 03.318730 145.5111 000000000 95 111 01 25.008630 33.353640 109.6733 000000000	82	111	O4 319.771660 102.978390 35.4875	0000000000
84 111 S2 119.802320 299.647030 23.9800 000000000 85 111 03 315.213850 284.809450 6.8655 000000000 86 111 01 225.008760 333.35360 109.6703 000000000 97 111 02 200.01520 96.818320 145.5111 000000000 98 111 01 25.008210 96.645800 109.6704 000000000 90 111 03 115.214380 129.209 6.8655 000000000 91 111 03 115.214380 129.207.0250 5.4877 000000000 93 111 04 315.713490 244.80950 6.8655 000000000 94 111 02 2.001130 96.818040 145.5111 000000000 95 111 01 25.008160 96.645890 109.6703 000000000 96 111 01 25.008160 96.645890 109.60000000	83	111	04 119.772410 297.021380 35.4877	0000000000
bs 111 03 03 03 03 03 03 03 00000000 86 111 02 200.00150 33.315360 19.6703 000000000 87 111 02 200.001520 66.818320 145.5111 000000000 99 111 01 25.008210 96.645800 19.6704 000000000 91 111 03 115.214380 115.192090 6.8655 000000000 92 111 04 119.771580 102.97797 35.4877 000000000 93 111 04 119.771580 129.647350 23.9801 000000000 94 111 02 2.00.01730 33.318730 145.5112 000000000 95 111 01 25.008160 96.645890 19.6703 000000000 96 111 01 25.008160 96.645890 19.6703 000000000 101 111 03 115.214480 15.19140 <td< td=""><td>84</td><td>111</td><td>S2 119.802320 299.647030 23.9800</td><td>0000000000</td></td<>	84	111	S2 119.802320 299.647030 23.9800	0000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	111	03 315.213850 284.809450 6.8695	000000000000000000000000000000000000000
501 $;$ C0.00152096.818320145.51110.000000088111C125.00821096.645800109.67040.0000000090111C1115.214380115.192096.86950.0000000091111C4319.771580102.97779035.48750.0000000092111C4319.771580102.97779035.48750.00000000093111C4119.771580297.02250038.48770.00000000094111S2119.801880299.64735023.98010.00000000095111C125.008530303.353640109.67030.00000000096111C125.00816096.645890109.67030.0000000097111C125.00816096.645890109.67030.00000000100111C3115.214440115.191406.86440.000000000101111S2319.802010100.35263023.97980.00000000102111C4319.773430102.97669035.48750.000000000103111C4315.213810284.8092806.8655000000000104111S2119.80237029.64742023.98000.0000000010511C125.00910030.353530109.67040.0000000010511C125.00817096.646101105.7030.00000000106111C125.00817096.646701	87	111	02 200.001950 303.181730 145.5112	00000000000
88 111 02 0.001520 96.818320 145.5111 000000000 99 111 03 115.214380 115.192090 6.8695 0000000000 91 111 03 115.214380 115.192090 6.8695 0000000000 92 111 04 119.771580 129.7790 35.4877 000000000 93 111 04 119.773530 297.022500 35.4877 000000000 94 111 03 15.213490 284.809560 6.8695 000000000 95 111 01 225.008630 303.3181730 145.5112 000000000 96 111 01 25.008169 96.818040 145.5111 000000000 100 111 01 25.008160 96.818040 145.5111 000000000 101 111 02 115.214400 115.191940 6.8694 000000000 102 111 04 119.771860 297.022490 35.4875 00000	501	;		
89 111 01 25.008210 96.645800 109.6704 000000000 90 111 03 115.214380 115.192090 6.8695 0000000000 91 111 04 319.800610 100.353040 23.9799 0000000000 93 111 04 319.771580 102.977790 35.4875 000000000 93 111 04 315.213490 284.809560 6.8695 000000000 96 111 01 225.008630 303.353640 105.6703 000000000 97 111 02 0.001190 96.818040 145.5111 000000000 98 111 02 0.001190 96.818040 145.5111 000000000 100 111 03 115.214480 115.91946 6.8647 000000000 101 111 03 115.214480 15.8178 000000000 103 111 04 319.773430 102.976500 35.4875 0000000000 103 111 03 315.213810 24.809280 6.8695	88	111	02 0.001520 96.818320 145.5111	0000000000
90 111 03 115.124380 115.122090 6.8695 000000000 91 111 S2 319.800610 100.353040 23.9799 000000000 92 111 04 119.773530 297.022500 35.4877 000000000 94 111 S2 119.80180 299.647350 23.8011 0000000000 95 111 03 315.213490 284.809560 6.8695 0000000000 96 111 01 225.008630 30.353640 109.6703 000000000 97 111 01 250.08160 96.818040 145.5111 000000000 98 111 02 0.001130 115.124480 115.191940 6.8694 000000000 101 111 02 119.773430 102.976690 35.4875 000000000 103 111 04 119.771860 277.022490 35.4875 000000000 104 119.773430 102.976697 35.4875 0000000000	89	111	01 25.008210 96.645800 109.6704	0000000000
91111 52 $319,800610$ 100.353040 23.9799 $000000000000000000000000000000000000$	90	111	03 115.214380 115.192090 6.8695	0000000000
92111 04 319.771580 102.977790 35.4875 000000000 94 111 $S2$ 119.801880 299.647350 23.9801 000000000 95 111 03 315.213490 284.809560 6.8695 000000000 96 111 01 225.00850 03.35460 109.6703 0000000000 97 111 02 200.001730 303.181730 145.5112 0000000000 96 111 01 25.008160 96.645890 199.6703 0000000000 100 111 01 25.008160 96.645890 199.6703 0000000000 100 111 01 25.008160 96.645890 199.6703 0000000000 100 111 03 115.214480 115.191940 6.8694 0000000000 103 111 04 119.771860 27.022490 35.4875 0000000000 103 111 04 119.771860 27.022490 35.4875 0000000000 105 111 01 225.008100 303.181740 145.5113 0000000000 106 111 01 225.008490 96.646010 109.6703 000000000 106 111 01 25.008490 96.646010 109.6703 000000000 106 111 01 25.008490 96.646010 199.6702 000000000 111 02 10.001470 96.818070 145.5110 0000000000 <td< td=""><td>91</td><td>111</td><td>s2 319.800610 100.353040 23.9799</td><td>0000000000</td></td<>	91	111	s2 319.800610 100.353040 23.9799	0000000000
94111 04 119.7/330297.02230033.4070000000009511103315.213490284.8095606.86950000000009611101225.008630303.353640109.67030000000009711102200.001730303.181730145.51120000000000503;0000000000981110125.00816096.818040145.5111000000000010011103115.214480115.1919406.8694000000000010111103315.21381023.9788000000000010211104319.773430102.97669035.4875000000000010311104319.773430102.97669035.4875000000000010411152119.802370299.64742023.980000000000010511103315.213810284.8092806.869500000000010611101225.009100303.353630109.67030000000001071110220.001980303.181740145.51130000000001061110125.00849096.646010109.670300000000010711102129.801390100.35295023.979800000000011111152319.801390100.35295023.979800000000011211104119.77138029.70222035.48750000000000	92	111	04 319.771580 102.977790 35.4875	0000000000
35 111 315.21349 225.03439 225.03439 $225.00000000000000000000000000000000000$	93	111	04 119.//3530 29/.022500 35.48// 52 119 801880 299 647350 23 9801	000000000000000000000000000000000000000
3611101225.008630303.353640109.6703000000000 97 11102200.001730303.181730145.51120000000000 503 ;	95	111	03 315.213490 284.809560 6.8695	00000000000
97 111 02 200.001730 303.181730 145.5112 000000000 503 ; 98 111 02 0.001190 96.818040 145.5111 000000000 100 111 03 15.214480 115.191940 6.8694 000000000 101 111 03 115.214480 115.191940 6.8694 000000000 102 111 04 319.773430 102.976690 35.4875 000000000 103 111 04 319.773430 102.976690 35.4878 000000000 104 111 52 119.802370 299.647420 23.9800 000000000 105 111 03 315.213810 284.809280 6.8695 000000000 107 111 02 20.001440 96.818080 145.5110 000000000 109 111 01 25.008490 96.646010 19.6703 000000000 111 01 15.214840 115.191950 6.8695 000000000 111 111 53 19.802310<	96	111	01 225.008630 303.353640 109.6703	0000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	111	02 200.001730 303.181730 145.5112	0000000000
98 111 O2 0.001190 96.818040 145.5111 00000000 99 111 O1 25.008160 96.645890 109.6703 000000000 100 111 O3 115.214480 115.191940 6.8694 000000000 101 111 S2 319.802010 100.352630 23.9788 000000000 103 111 O4 319.771860 297.622490 35.4878 000000000 103 111 O4 119.771860 297.022490 35.4878 000000000 104 111 S2 119.802370 299.647420 23.9800 000000000 105 111 O3 315.213810 284.809280 6.8655 000000000 106 111 O2 0.01440 96.818080 145.5110 000000000 107 111 O2 0.001440 96.818080 145.5110 000000000 111 111 S3 19.801390 100.352950 23.9798 0000	503	;		
99 111 01 25.008160 96.645890 106.6703 000000000 100 111 03 115.214480 115.191940 6.8694 000000000 101 111 04 319.802010 100.352630 23.9788 000000000 103 111 04 319.773430 102.976690 35.4878 000000000 104 111 04 319.773430 102.976690 35.4878 000000000 105 111 03 315.213810 284.809280 6.8695 000000000 106 111 01 225.009100 33.353630 109.6704 000000000 107 111 02 20.01440 96.818080 145.5110 000000000 109 111 01 25.008490 96.646010 109.6703 000000000 111 01 25.008490 96.646010 109.6703 0000000000 111 111 03 315.214880 115.91980 6.8695 0000000000	98	111	02 0.001190 96.818040 145.5111	0000000000
10011103115.21440115.1919406.86940000000000101111S2319.802010100.35263023.9798000000000010311104319.773430102.97669035.48750000000000104111S2119.802370299.64742023.9800000000000010511103315.213810284.8092806.8695000000000010611101225.009100303.353630109.67040000000000107111020.00144096.818080145.511000000000001081110125.00849096.646010109.670300000000001091110125.00849096.646010109.67030000000000111111S2319.801390100.35295023.9798000000000011211104319.772110102.97750035.4875000000000011311104119.773080297.02222035.48750000000000114111S2119.802310299.64740023.9800000000000011511103315.213830284.8093506.86950000000000114111020.00147096.818170145.511000000000011511103115.214620115.1919106.8694000000000114111S2319.80880100.35317023.979800000000012511103315.213580	99	111	01 25.008160 96.645890 109.6703	0000000000
11132313.30210100.323303035.487500000000010211104119.771860297.02249035.4875000000000104111S2119.802370299.64742023.9800000000000010511103315.213810284.8092806.8695000000000010611101225.009100303.353630109.6704000000000010711102200.001980303.181740145.511300000000001081110125.00849096.646010109.670300000000001091110125.00849096.646010109.6703000000000011011103115.214840115.1919506.869500000000001111111111122319.801390100.35295023.9798000000000011311104119.773080297.02222035.48750000000000114111S2119.80231029.64740023.980000000000011511103315.213830284.8093506.8695000000000011611101225.009100303.181740145.5110000000000117111020.00147096.818170145.51100000000001161110125.00837096.645870109.67020000000001201110125.00837096.645870109.670200000000012111152315.214620 <t< td=""><td>100</td><td>111</td><td>03 115.214480 115.191940 6.8694</td><td>00000000000</td></t<>	100	111	03 115.214480 115.191940 6.8694	00000000000
103 111 04 119.771860 297.022490 35.4878 000000000 104 111 S2 119.802370 299.647420 23.9800 000000000 105 111 03 315.213810 284.809280 6.8695 000000000 106 111 01 225.009100 303.353630 109.6704 0000000000 107 111 02 200.001980 33.181740 145.5113 000000000 108 111 02 0.001440 96.818080 145.5110 000000000 109 111 01 25.008490 96.646010 109.6703 000000000 111 01 25.108490 96.646010 109.6703 000000000 111 111 03 115.214840 115.191950 6.8695 000000000 112 111 04 119.773080 297.02220 35.4878 000000000 115 111 03 315.213830 284.809350 6.8695 0000000000	102	111	04 319.773430 102.976690 35.4875	00000000000
104 111 $S2$ 119.802370 299.647420 23.9800 000000000 105 111 03 315.213810 284.809280 6.8695 0000000000 106 111 01 225.009100 303.353630 109.6704 0000000000 107 111 02 200.001980 303.181740 145.5113 0000000000 505 ; $0000100000000000000000000000000000000$	103	111	04 119.771860 297.022490 35.4878	0000000000
105 111 03 315.213810 284.809280 6.8695 000000000 106 111 01 225.009100 303.353630 109.6704 000000000 107 111 02 200.001980 303.181740 145.5113 000000000 105 ; 108 111 02 0.001440 96.818080 145.5110 000000000 109 111 01 25.008490 96.646010 109.6703 000000000 110 111 03 115.214840 115.191950 6.8695 0000000000 111 111 03 115.214840 115.91950 23.9798 0000000000 112 111 04 119.773080 297.022220 35.4875 0000000000 114 111 $S2$ 119.802310 299.647400 23.9800 0000000000 115 111 03 315.213830 284.809350 6.8695 0000000000 117 111 02 200.00230 303.181740 145.5112 0000000000 117 111 02 20.001470 96.818170 145.5110 0000000000 119 111 01 25.008370 96.645870 109.6702 000000000 120 111 03 115.214620 115.191910 6.8694 0000000000 121 111 $S2$ 319.800880 100.353170 23.9800 0000000000 <td>104</td> <td>111</td> <td>S2 119.802370 299.647420 23.9800</td> <td>0000000000</td>	104	111	S2 119.802370 299.647420 23.9800	0000000000
106111 01 225.009100 303.353630 109.6704 000000000 107 111 02 200.001980 303.181740 145.5113 000000000 505 ; 108 111 02 0.001440 96.818080 145.5110 000000000 109 111 01 25.008490 96.646010 109.6703 000000000 110 111 01 25.008490 96.646010 109.6703 000000000 111 111 03 115.214840 115.191950 6.8695 000000000 112 111 04 319.772110 102.977500 35.4875 0000000000 113 111 04 119.773080 297.022220 35.4878 0000000000 114 111 $S2$ 119.802310 299.647400 23.9800 0000000000 115 111 03 315.213830 284.809350 6.8695 0000000000 117 111 02 200.002030 303.181740 145.5110 0000000000 117 111 02 20.001470 96.818170 145.5110 0000000000 120 111 01 25.008370 96.645870 109.6702 0000000000 121 111 02 315.21380 284.809330 6.8696 0000000000 122 111 04 319.771840 102.978980 35.4876 0000000000 123 111 02 2.0001480 96.818350 <td>105</td> <td>111</td> <td>03 315.213810 284.809280 6.8695</td> <td>0000000000</td>	105	111	03 315.213810 284.809280 6.8695	0000000000
107111 02 200.001980 303.181740 145.5113 000000000 505 ; 108 111 02 0.001440 96.818080 145.5110 000000000 109 111 01 25.008490 96.646010 109.6703 000000000 110 111 01 25.008490 96.646010 109.6703 0000000000 111 111 03 115.214840 115.191950 6.8695 0000000000 112 111 04 319.772110 102.977500 35.4875 0000000000 113 111 04 119.773080 297.022220 35.4878 0000000000 114 111 92 119.802310 299.647400 23.9800 0000000000 115 111 03 315.213830 284.809350 6.8695 0000000000 116 111 01 225.009100 303.353550 109.6704 0000000000 117 111 02 0.001470 96.818170 145.5110 0000000000 120 111 01 25.008370 96.645870 109.6702 0000000000 121 111 02 0.001470 96.818170 145.5110 0000000000 122 111 04 319.771840 102.978980 35.4876 0000000000 121 111 92 119.802560 299.646970 23.9800 0000000000 124 111 02 0.001480	106	111	01 225.009100 303.353630 109.6704	0000000000
505 ; 108 111 02 0.001440 96.818080 145.5110 000000000 109 111 01 25.008490 96.646010 109.6703 000000000 110 111 03 115.214840 115.191950 6.8695 000000000 111 111 03 115.214840 115.191950 6.8695 000000000 112 111 04 319.772110 102.977500 35.4878 000000000 114 111 91.9773080 297.02220 35.4878 000000000 115 111 03 315.213830 284.809350 6.8695 000000000 117 111 01 2200.002030 303.181740 145.5112 000000000 117 111 02 200.00230 303.181740 145.5110 000000000 119 111 01 25.008370 96.645870 109.6702 000000000 120 111 03 115.214620 115.191910 6.8694 000000000 121 111 02 219.	107	111	02 200.001980 303.181740 145.5113	0000000000
105111 02 0.001440 96.646010 199.6130 000000000 10911101 25.008490 96.646010 109.6703 000000000 11111103 115.214840 115.191950 6.8695 000000000 11211104 319.772110 102.977500 35.4875 000000000 11311104 119.773080 297.02220 35.4878 0000000000 114111 $S2$ 119.802310 299.647400 23.9800 0000000000 11511103 315.213830 284.809350 6.8695 0000000000 11611101 225.009100 303.353550 109.6704 0000000000 11711102 200.00230 303.181740 145.5110 0000000000 107 $;$ $;$ $;$ $;$ $;$ $;$ $;$ $;$ 11811102 200.00230 303.181740 145.5110 0000000000 12011103 115.214620 115.191910 6.8694 0000000000 121111S2 319.800880 100.353170 23.9798 0000000000 12211104 319.771840 102.978980 35.4876 0000000000 12311104 319.771840 102.978980 35.4877 0000000000 124111S2 119.802560 299.646970 23.9800 0000000000 12511103 315.213	109	;	02 0 001440 96 818080 145 5110	0000000000
1101110315.21484015.191950 6.8695 00000000011111152319.801390100.35295023.979800000000011211104319.772110102.97750035.4875000000000011311104119.773080297.02222035.4878000000000011411152119.802310299.64740023.9800000000000011511103315.213830284.8093506.8695000000000011611101225.009100303.353550109.67040000000000117111020.00147096.818170145.5112000000000107;118111020.00147096.818170145.5110000000000012011103115.214620115.1919106.8694000000000012111103115.214620115.1919106.8694000000000012211104319.771840102.97788035.4876000000000012311104119.774350297.02152035.4877000000000012411152119.802560299.64697023.9800000000000012511103315.213580284.8093306.869600000000001251110125.00833096.645910109.670200000000001261110125.00833096.645910109.670	109	111	01 25.008490 96.646010 109.6703	00000000000
111111 $S2$ 319.801390 100.352950 23.9798 000000000 11211104 319.772110 102.977500 35.4875 0000000000 11311104 119.773080 297.022220 35.4878 0000000000 114111 $S2$ 119.802310 299.647400 23.9800 0000000000 11511103 315.213830 284.809350 6.8695 0000000000 11611101 225.009100 303.353550 109.6704 0000000000 11711102 200.002030 303.181740 145.5112 0000000000 107 i 01 25.008370 96.645870 109.6702 0000000000 11911101 25.008370 96.645870 109.6702 0000000000 12011103 115.214620 115.191910 6.8694 0000000000 121111S2 319.800880 100.353170 23.9798 0000000000 12211104 319.771840 102.978980 35.4876 0000000000 12311103 315.213580 299.646970 23.9800 0000000000 124111 $S2$ 119.802560 299.646970 23.9800 000000000 12511103 315.213580 284.80930 6.8696 0000000000 12511103 315.213580 284.80930 6.8696 0000000000 12611101	110	111	03 115.214840 115.191950 6.8695	0000000000
112111 04 319.772110 102.977500 35.4875 000000000 113111 04 119.773080 297.022220 35.4878 0000000000 114111 52 119.802310 299.647400 23.9800 0000000000 115111 03 315.213830 284.809350 6.8695 0000000000 116111 01 225.009100 303.353550 109.6704 0000000000 117111 02 200.002030 303.181740 145.5112 0000000000 507 ;118111 02 0.001470 96.818170 145.5110 0000000000 120111 01 25.008370 96.645870 109.6702 0000000000 121111 03 115.214620 115.191910 6.8694 0000000000 122111 03 115.214620 115.191910 6.8694 0000000000 123111 04 119.774350 297.021520 35.4876 0000000000 124111 52 119.802560 299.646970 23.9800 0000000000 125111 03 315.213580 284.809330 6.8696 0000000000 125111 02 200.001980 303.181910 145.5112 0000000000 126111 01 225.009000 303.353480 109.6704 0000000000 126111 01 25.008330 96.818350 145.5111 <td< td=""><td>111</td><td>111</td><td>s2 319.801390 100.352950 23.9798</td><td>0000000000</td></td<>	111	111	s2 319.801390 100.352950 23.9798	0000000000
113111 04 119.773080 297.022220 35.4878 000000000 114111 52 119.802310 299.647400 23.9800 000000000 115111 03 315.213830 284.809350 6.8695 0000000000 116111 01 225.009100 303.353550 109.6704 0000000000 117111 02 200.002030 303.181740 145.5112 00000000000 507 ;118111 02 0.001470 96.818170 145.5112 $000000000000000000000000000000000000$	112	111	04 319.772110 102.977500 35.4875	0000000000
114111 $S2$ 119.802310 299.647400 23.9800 000000000 11511103 315.213830 284.809350 6.8695 0000000000 11611101 225.009100 303.353550 109.6704 0000000000 11711102 200.002030 303.181740 145.5112 0000000000 507 ;11811101 25.008370 96.645870 109.6702 $000000000000000000000000000000000000$	113	111	04 119.773080 297.022220 35.4878	0000000000
115111 03 315.213830 284.809350 6.8695 0000000000 11611101 225.009100 303.353550 109.6704 0000000000 11711102 200.002030 303.181740 145.5112 0000000000 507 ;11811102 0.001470 96.818170 145.5110 $000000000000000000000000000000000000$	114	111	S2 119.802310 299.647400 23.9800	0000000000
11011101 223.003100 303.33330 103.0704 000000000 11711102 200.002030 303.181740 145.5112 0000000000 507 ;11811102 0.001470 96.818170 145.5112 00000000000 119 11101 25.008370 96.645870 109.6702 00000000000 120 11103 115.214620 115.191910 6.8694 0000000000 121 111S2 319.800880 100.353170 23.9798 0000000000 122 11104 319.771840 102.978980 35.4876 0000000000 123 11104 119.774350 297.021520 35.4877 0000000000 124 111S2 119.802560 299.646970 23.9800 0000000000 125 11103 315.213580 284.809330 6.8696 0000000000 126 11101 225.009000 303.353480 109.6704 0000000000 127 11102 200.001980 303.181910 145.5112 0000000000 129 11101 25.008330 96.645950 145.5111 0000000000 129 11101 25.008330 96.645910 199.6702 0000000000 130 11103 115.214860 115.191970 6.8694 0000000000 131 111 $S2$ 319.801540 100.352510 23.9798 0000000000 <td>115</td> <td>111</td> <td>03 315.213830 284.809350 6.8695</td> <td>00000000000</td>	115	111	03 315.213830 284.809350 6.8695	00000000000
507 ; 118 111 02 0.001470 96.818170 145.5110 000000000 119 111 01 25.008370 96.645870 109.6702 000000000 120 111 03 115.214620 115.191910 6.8694 0000000000 121 111 03 115.214620 115.191910 6.8694 0000000000 122 111 04 319.771840 102.978980 35.4876 0000000000 123 111 04 119.774350 297.021520 35.4877 0000000000 124 111 52 119.802560 299.646970 23.9800 0000000000 125 111 03 315.213580 284.809330 6.8696 0000000000 125 111 03 25.009000 303.353480 109.6704 0000000000 126 111 01 225.009000 303.181910 145.5112 0000000000 127 111 02 200.001980 303.181910 145.5111 0000000000 128 111	117	111	02 200.002030 303.181740 145.5112	00000000000
118 111 02 0.001470 96.818170 145.5110 000000000 119 111 01 25.008370 96.645870 109.6702 000000000 120 111 03 115.214620 115.191910 6.8694 000000000 121 111 S2 319.800880 100.353170 23.9798 0000000000 122 111 04 319.771840 102.978980 35.4876 0000000000 123 111 04 119.774350 297.021520 35.4877 0000000000 124 111 S2 119.802560 299.646970 23.9800 000000000 125 111 03 315.213580 284.809330 6.8696 0000000000 125 111 01 225.009000 303.353480 109.6704 0000000000 126 111 01 225.009000 303.181910 145.5112 0000000000 127 111 02 200.001980 303.181910 145.5111 0000000000 129 111 01 25.008330 96.8	507	;		
119 111 01 25.008370 96.645870 109.6702 000000000 120 111 03 115.214620 115.191910 6.8694 000000000 121 111 52 319.800880 100.353170 23.9798 0000000000 122 111 04 319.771840 102.978980 35.4876 0000000000 123 111 04 119.774350 297.021520 35.4877 0000000000 124 111 52 119.802560 299.646970 23.9800 000000000 125 111 03 315.213580 284.809330 6.8696 0000000000 126 111 01 225.009000 303.353480 109.6704 000000000 127 111 02 200.001980 303.181910 145.5112 000000000 509 ; - - - - 0000000000 128 111 01 25.008330 96.818350 145.5111 0000000000 130 111 01 25.008330 96.645910 199.670	118	111	02 0.001470 96.818170 145.5110	0000000000
120 111 03 115.214620 115.191910 6.8694 000000000 121 111 S2 319.800880 100.353170 23.9798 0000000000 122 111 04 319.771840 102.978980 35.4876 0000000000 123 111 04 119.774350 297.021520 35.4877 0000000000 124 111 S2 119.802560 299.646970 23.9800 000000000 125 111 03 315.213580 284.809330 6.8696 0000000000 126 111 01 225.009000 303.353480 109.6704 0000000000 127 111 02 200.001980 303.181910 145.5112 000000000 509 ;	119	111	01 25.008370 96.645870 109.6702	0000000000
121 111 S2 319.800880 100.353170 23.9798 0000000000 122 111 04 319.771840 102.978980 35.4876 0000000000 123 111 04 119.774350 297.021520 35.4877 0000000000 124 111 S2 119.802560 299.646970 23.9800 0000000000 125 111 03 315.213580 284.809330 6.8696 0000000000 126 111 01 225.009000 303.353480 109.6704 0000000000 127 111 02 200.001980 303.181910 145.5112 0000000000 509 ;	120	111	03 115.214620 115.191910 6.8694	0000000000
122 111 04 319.771840 102.978980 35.4876 00000000000 123 111 04 119.774350 297.021520 35.4877 00000000000 124 111 52 119.802560 299.646970 23.9800 0000000000 125 111 03 315.213580 284.809330 6.8696 0000000000 126 111 01 225.009000 303.353480 109.6704 0000000000 127 111 02 200.001980 303.181910 145.5112 0000000000 509 ;	121	111	S2 319.800880 100.353170 23.9798	0000000000
123 111 04 119.774330 297.021320 33.4877 00000000000 124 111 52 119.802560 299.646970 23.9800 0000000000 125 111 03 315.213580 284.809330 6.8696 0000000000 126 111 01 225.009000 303.353480 109.6704 0000000000 127 111 02 200.001980 303.181910 145.5112 0000000000 509 ;	122	111	04 319.771840 102.978980 35.4876	00000000000
125 111 03 315.213580 284.809330 6.8696 000000000 126 111 01 225.009000 303.353480 109.6704 000000000 127 111 02 200.001980 303.181910 145.5112 0000000000 509 ;	124	 111	S2 119.802560 299.646970 23 9800	0000000000
126 111 01 225.009000 303.353480 109.6704 0000000000 127 111 02 200.001980 303.181910 145.5112 0000000000 509 ;	125	111	03 315.213580 284.809330 6.8696	0000000000
127 111 02 200.001980 303.181910 145.5112 000000000 509 ; 128 111 02 0.001480 96.818350 145.5111 000000000 129 111 01 25.008330 96.645910 109.6702 0000000000 130 111 03 115.214860 115.191970 6.8694 0000000000 131 111 52 319.801540 100.352510 23.9798 000000000 132 111 04 319.772490 102.977710 35.4874 000000000	126	111	01 225.009000 303.353480 109.6704	0000000000
509 ; 128 111 02 0.001480 96.818350 145.5111 000000000 129 111 01 25.008330 96.645910 109.6702 000000000 130 111 03 115.214860 115.191970 6.8694 0000000000 131 111 52 319.801540 100.352510 23.9798 000000000 132 111 04 319.772490 102.977710 35.4874 000000000	127	111	02 200.001980 303.181910 145.5112	0000000000
128 111 02 0.001480 96.818350 145.5111 000000000 129 111 01 25.008330 96.645910 109.6702 000000000 130 111 03 115.214860 115.191970 6.8694 0000000000 131 111 52 319.801540 100.352510 23.9798 0000000000 132 111 04 319.772490 102.977710 35.4874 0000000000	509	;		
129 111 01 25.008330 96.645910 109.6702 000000000 130 111 03 115.214860 115.191970 6.8694 000000000 131 111 S2 319.801540 100.352510 23.9798 000000000 132 111 04 319.772490 102.977710 35.4874 000000000	128	111	02 0.001480 96.818350 145.5111	0000000000
130 111 03 113.214860 113.191970 6.8694 0000000000 131 111 \$2 319.801540 100.352510 23.9798 000000000 132 111 04 319.772490 102.977710 35.4874 0000000000	129	111	OI 25.008330 96.645910 109.6702	0000000000
132 111 04 319.772490 102.977710 35.4874 000000000	130	111	S2 319.801540 100.352510 23 0709	000000000000000000000000000000000000000
	132	111	04 319.772490 102.977710 35.4874	0000000000

1 2 2	111		04	110 772600	207 022200	3E 4077	0000000000
133	111		04	119.//2000	29/.022200	33.40//	0000000000
134	111		S2	119.802160	299.647270	23.9800	0000000000
135	111		03	315.214060	284.809430	6.8695	0000000000
136	111		01	225.009380	303.353990	109.6705	0000000000
1 2 1	111		01	223.009300	202.101040	145 5112	0000000000
137	TTT		02	200.002310	303.181840	145.5113	00000000000
511	;						
138	111		02	0.002140	96.818340	145.5109	0000000000
120	111		01	25 008030	06 645960	100 6702	0000000000
139	111		01	23.008930	90.040000	109.0702	0000000000
140	111		03	115.215370	115.192040	6.8694	0000000000
141	111		S2	319.802840	100.352560	23.9798	0000000000
142	111		<u>04</u>	319 773510	102 977510	35 4875	0000000000
142	111			519.775510	102.377510	55.4075	0000000000
143	111		04	119.772860	297.021730	35.4877	00000000000
144	111		S2	119.802510	299.647580	23.9800	0000000000
145	111		03	315 214440	284 809360	6 8695	0000000000
140	111		00	005 000880	201.000000	100 6805	0000000000
146	TTT		OT	225.009//0	303.353800	109.6/05	00000000000
147	111		02	200.002840	303.182000	145.5111	0000000000
161	161						
E1 2							
513	;						
502	101		S2	0			
515	160	4	14	0			
153	111		02	0 001240	96 633880	140 0619	0000000000
155	111		02	0.001240	90.033000	114 1600	0000000000
154	TTT		OT	28.010010	96.704280	114.1628	00000000000
155	111		03	108.367430	103.097630	30.6768	0000000000
156	111		04	309.277950	108.420560	11.5708	0000000000
157	111			100 266700	00 651060	22.0700	0000000000
121	TTT		ST	109.300/20	99.051000	23.9/99	0000000000
158	111		S1	309.366300	300.348420	23.9801	00000000000
159	111		04	109.276660	291.579390	11.5710	0000000000
160	111		0.2	209 267590	206 001/00	20 6770	0000000000
100	111		03	308.30/300	290.901400	30.0770	0000000000
161	111		01	228.016430	303.295070	114.1628	0000000000
162	111		02	200.002090	303.365680	140.0620	0000000000
517	•						
1.00			~ ~	0 001 450		1 4 9 9 6 1 8	
103	TTT		02	0.001450	96.633630	140.061/	00000000000
164	111		01	28.015820	96.703940	114.1626	0000000000
165	111		03	108.366900	103.097400	30.6767	0000000000
166	111		04	200 276200	109 401020	11 5700	0000000000
100	TTT		04	309.276200	108.421030	11.5/09	0000000000
167	111		S1	109.367030	99.650710	23.9798	0000000000
168	111		S1	309.367820	300.349000	23,9800	0000000000
160	111		04	100 276560	201 570150	11 5710	0000000000
109	111		04	109.270500	291.579150	11.5710	0000000000
170	111		03	308.368500	296.901580	30.6770	00000000000
171	111		01	228.016460	303.295080	114.1629	0000000000
172	111		02	200 001890	303 365690	140 0621	0000000000
± / 2			02	200.001000	303.303030	110.0021	0000000000
519	;						
173	111		02	0.001320	96.633770	140.0618	0000000000
174	111		01	28,015810	96.704070	114,1627	0000000000
175	111		~~~	100 266020	102 006550	20 6767	0000000000
1/5	111		03	100.300930	103.090550	30.0707	0000000000
176	111		04	309.277230	108.421030	11.5709	0000000000
177	111		S1	109.366960	99.649590	23.9798	0000000000
170	111		C 1	200 265120	200 240460	22 0900	0000000000
170	111		51	309.303130	300.349400	23.9800	0000000000
179	111		04	109.275980	291.578810	11.5709	0000000000
180	111		03	308.366770	296.901650	30.6770	0000000000
181	111		01	228 016480	303 295230	114 1628	იიიიიიიიი
101			01	220.010100	303.255250	140.0000	0000000000
187	TTT		02	200.001880	303.365/60	140.0620	00000000000
521	;						
183	111		02	0.001300	96.633860	140.0617	0000000000
184	111		01	28 015590	96 702940	114 1625	000000000
101	 		01	100 01000	100 00	22301023	00000000000
185	111		03	108.367490	103.096590	30.6768	00000000000
186	111		04	309.276930	108.420810	11.5708	0000000000
187	111		S1	109.366050	99.651030	23,9799	0000000000
100	111			200.200000	200 240820	23.3733	0000000000
T88	TTT		ST	309.365360	300.349730	23.9801	00000000000
189	111		04	109.276680	291.579430	11.5710	0000000000
190	111		03	308.366590	296,901780	30.6771	0000000000
101	111		01	220 016540	202 204020	114 1629	0000000000
191	111		01	220.010540	303.294920	114.1020	0000000000
192	111		02	200.001820	303.365700	140.0620	0000000000
523	;						
102			02	0 001 220	96 622700	140 0610	0000000000
193			02	0.001220	30.033/90	T-10.0019	000000000000000000000000000000000000000
194	111		01	28.015610	96.704310	114.1626	0000000000
195	111		03	108.366700	103.097540	30.6769	0000000000
196	111		04	309 277600	108 421000	11 5709	0000000000
105	 			100 200100	100.121090	11.0700	000000000000000000000000000000000000000
т97	111		S 1	109.367160	99.649950	23.9798	000000000000
198	111		S1	309.366180	300.349160	23.9800	0000000000
199	111		04	109 276530	291 579270	11.5709	0000000000
200	111		~~	200 20040	206 000200	20 6770	00000000000
200	TTT		03	300.308840	230.833380	30.0770	000000000000000000000000000000000000000
201	111		01	228.016670	303.295130	114.1627	0000000000
202	111		02	200.002060	303.365640	140.0619	0000000000
525	•						
525							
203	111		02	0.001560	96.633830	140.0617	0000000000
204	111		01	28.015750	96.704140	114.1627	0000000000

205	111		03	108.368140	103.096470	30.6769	0000000000
206	111		04	309.277230	108.420870	11.5708	0000000000
207	111		S1	109 366430	99 649710	23 9799	0000000000
207			51	109.300430	99.049710	23.9799	0000000000
208	111		S 1	309.365940	300.348980	23.9801	00000000000
209	111		04	109.276660	291.579380	11.5709	0000000000
210	111		03	308.367330	296,901600	30.6770	0000000000
011	111		01	000 01 5000		114 1000	0000000000
211	TTT		01	228.015980	303.295360	114.162/	00000000000
212	111		02	200.002180	303.365830	140.0619	0000000000
527	:						
212	111		~~	0 001500	06 622760	140 0610	0000000000
213	TTT		02	0.001500	90.033/00	140.0010	0000000000
214	111		01	28.015600	96.704260	114.1627	00000000000
215	111		03	108.367920	103.098280	30.6768	0000000000
216	111		04	200 276400	100 400040	11 5700	0000000000
210	111		04	309.2/0400	100.420040	11.5708	0000000000
217	111		S1	109.365710	99.650440	23.9799	00000000000
218	111		S1	309.366200	300.349080	23.9800	0000000000
219	111		04	100 276040	201 570000	11 5709	0000000000
219	111			109.270940	291.379090	11.5709	0000000000
220	111		03	308.366630	296.900840	30.6770	00000000000
221	111		01	228.016550	303.295130	114.1627	0000000000
222	111		02	200 002070	202 265550	140 0610	0000000000
222	111		02	200.002070	303.303550	140.0019	0000000000
161	161						
529	;						
504	101		01	0			
504	101		01	0			
531	160	4	14	0			
227	111		03	221.143200	104.331050	108.9463	0000000000
228	111		C 1	225 009470	102 259020	100 6700	0000000000
220	TTT		DT.	223.008470	103.338030	109.0700	0000000000
229	111		S2	238.453370	103.299380	114.1623	00000000000
230	111		04	244.391350	104.013770	118.0837	0000000000
231	111		02	351 651560	98 437430	60 9024	0000000000
231	111		02	351.051500	90.437430	00.9024	0000000000
232	111		02	151.651370	301.560930	60.9026	00000000000
233	111		04	44.391990	295,984370	118.0839	0000000000
234	111		d 2	29 452020	206 609510	114 1627	0000000000
234	TTT		52	30.433920	290.090510	114.102/	0000000000
235	111		S1	25.009310	296.639930	109.6704	00000000000
236	111		03	21.144000	295.667470	108.9467	0000000000
533							
555			~ ~		104 001 -00	100 0465	
237	111		03	221.142970	104.331580	108.9465	00000000000
238	111		S1	225.008290	103.358540	109.6700	0000000000
230	111		92	238 453500	103 200800	114 1624	0000000000
239	TTT		52	238.433300	103.299800	114.1024	0000000000
240	111		04	244.391420	104.014720	118.0838	00000000000
241	111		02	351.651710	98.437800	60.9023	0000000000
242	111		02	151 651500	201 561210	60 0024	0000000000
272	TTT		02	101.001000	301.301210	00.9024	0000000000
243	111		04	44.391810	295.984490	118.0839	0000000000
244	111		S 2	38.453890	296.698540	114.1627	0000000000
245	111		C 1	25 000000	206 620710	100 6704	0000000000
245	111		ST	25.009000	290.039/10	109.0704	0000000000
246	111		03	21.143830	295.667650	108.9467	00000000000
535	;						
247	111		03	221 142980	104 331800	108 9465	0000000000
217				221.112900	101.331000	100.0400	
248	111		S 1	225.009010	103.358400	109.6700	00000000000
249	111		S2	238.453410	103.299690	114.1623	0000000000
250	111		04	244 391400	104 014540	118 0837	0000000000
250				211.351100	101.011010	110.0007	0000000000
251	TTT		02	351.651350	98.437890	60.9023	00000000000
252	111		02	151.651450	301.561440	60.9025	0000000000
253	111		04	44 391540	295 984000	118 0840	0000000000
255				20 452020	2001000	114 1 600	
254	TTT		S2	38.453890	296.698090	114.1627	00000000000
255	111		S1	25.008860	296.639620	109.6704	0000000000
256	111		03	21,144000	295.667190	108.9467	0000000000
507			•••				
537	;						
257	111		03	221.143150	104.331100	108.9465	0000000000
258	111		S1	225.008430	103.358520	109.6700	0000000000
250	111		~_	000 450000	102 200010	114 1604	0000000000
259	TTT		52	238.453200	103.300210	114.1024	0000000000
260	111		04	244.391390	104.014580	118.0837	0000000000
261	111		02	351,650980	98.437530	60.9023	0000000000
262	111		02	161 661400	201 661200	60 0025	0000000000
202	TTT		02	101.001400	201.201200	00.9025	0000000000
263	111		04	44.391980	295.984420	118.0841	00000000000
264	111		S 2	38.454200	296.698500	114.1626	0000000000
265	111		d 1	25 000260	296 620070	100 6704	0000000000
203	111 1		±د.	23.009200	230.0399/0	109.0/04	000000000000000000000000000000000000000
266	111		03	21.144110	295.667610	108.9468	0000000000
539	;						
267	111		03	221 142240	104 331390	108 9465	0000000000
201			03	221.173240	101.331300	100.9403	000000000000000000000000000000000000000
268	111		s1	225.008620	103.358540	109.6699	00000000000
269	111		S 2	238.453450	103.300190	114.1623	0000000000
270	111		04	244 201240	104 014720	118 0020	0000000000
2/0	111 1		04	277.371340	101.014/20	TT0.0030	000000000000000000000000000000000000000
271	111		02	351.651310	98.437510	60.9023	0000000000
272	111		02	151.651620	301.561270	60.9025	0000000000
272	111		<u>^4</u>	44 301550	295 984350	118 0840	000000000
273	 		21	11.091000	200.004000	114 1606	000000000000000000000000000000000000000
274	111		s2	38.454200	∡90.698330	114.1626	000000000000
275	111		S1	25.009190	296.639670	109.6704	0000000000
276	111		03	21 143040	295 667330	108 9467	0000000000
2,0			55	11.1110/10			

541							
277	, 111		~ 2	221 142050	104 221100	109 0465	0000000000
2//	111		03	221.142950	104.331100	100.9405	0000000000
278			SI	225.008550	103.358400	109.6700	00000000000
279	111		S2	238.453660	103.299660	114.1623	00000000000
280	111		04	244.391510	104.014440	118.0837	0000000000
281	111		02	351.651400	98.437730	60.9023	0000000000
282	111		02	151.651390	301.561310	60.9025	0000000000
283	111		04	44.392010	295,984340	118.0838	0000000000
284	111		52	38 454060	296 698540	114 1627	0000000000
201	111		c1	25 009020	296 630840	100 6704	0000000000
205	111		51	23.009020	290.039040	109.0704	0000000000
286	TTT		03	21.143930	295.667400	108.9467	00000000000
543	;						
287	111		03	221.142980	104.331670	108.9466	0000000000
288	111		S1	225.008700	103.358690	109.6702	0000000000
289	111		s2	238.453410	103.299870	114.1625	0000000000
290	111		04	244.391390	104.014650	118.0838	0000000000
291	111		02	351.651600	98.437780	60.9024	0000000000
202	111		02	151 651520	201 561260	60 9025	0000000000
292	111		02	131.031330	301.301200	110 0040	0000000000
293			04	44.391920	295.984430	118.0840	0000000000
294	111		S2	38.454010	296.698710	114.1627	00000000000
295	111		S1	25.009340	296.640160	109.6703	0000000000
296	111		03	21.144040	295.668090	108.9468	0000000000
161	161						
545	;						
506	101		02				
547	160	4	14	0			
299	111	-	~ <u>-</u> -	197 102060	103 850080	147 3100	0000000000
200	111		03	200 001270	103.050000	145 5104	0000000000
300	111		SI	200.001370	103.18/030	145.5104	0000000000
301	TTT		S2	210.438900	103.371580	140.0613	00000000000
302	111		04	215.654990	104.099230	138.9530	0000000000
303	111		01	151.651010	101.566580	60.9021	0000000000
304	111		01	351.650920	298.433750	60.9025	0000000000
305	111		04	15.654820	295.902050	138.9533	0000000000
306	111		S 2	10.439550	296.628010	140.0616	0000000000
307	111		S 1	0.002580	296.812450	145,5109	0000000000
308	111		03	397 193610	296 148200	147 3202	0000000000
500			05	557.155010	290.140200	147.5202	0000000000
249	7		~ ~	108 102000	102 051060	148 2100	
309	111		03	197.193220	103.851060	14/.3199	0000000000
310	TTT		ST	200.001160	103.187040	145.5105	00000000000
311	111		s2	210.439260	103.371420	140.0614	0000000000
312	111		04	215.654680	104.099050	138.9532	0000000000
313	111		01	151.651110	101.566640	60.9022	0000000000
314	111		01	351.650730	298.433470	60.9024	0000000000
315	111		04	15,654890	295,901450	138,9532	0000000000
316	111		52	10.439260	296.628250	140.0615	0000000000
317	111		s1	0 001370	296 811810	145 5108	0000000000
210	111		01	208 102480	290.011010	140 2001	0000000000
310	TTT		03	39/.1934/0	296.148460	14/.3201	0000000000
551	;						
319	111		03	197.192370	103.850830	147.3199	0000000000
320	111		S1	200.001570	103.187510	145.5106	0000000000
321	111		s2	210.439240	103.371370	140.0614	0000000000
322	111		04	215.655370	104.098500	138.9531	0000000000
323	111		01	151.650840	101.566590	60.9022	0000000000
324	111		01	351,650250	298,433170	60,9024	0000000000
325	111		04	15 654870	295 901160	138 9532	0000000000
326	111		d 2	10 420120	296 628000	140 0616	0000000000
320	111		54	10.439130	296.628000	140.0010	0000000000
347	111		SI	0.001630	296.811890	145.5108	0000000000
328	111		03	397.193840	296.148000	147.3202	00000000000
553	;						
329	111		03	197.192990	103.850590	147.3199	0000000000
330	111		S1	200.001450	103.187270	145.5105	0000000000
331	111		s2	210.438910	103.371370	140.0615	0000000000
332	111		04	215,655350	104.098720	138,9532	0000000000
222	111		01	151 651160	101 565800	60 9021	0000000000
221	111		01	251 650220	209 422270	60 9024	0000000000
225	111		01	15 255000	290. 1332/0	120 0522	000000000000
222	111 111		04	10 40000	293.9013/0	140 0000	000000000000
336	111		52	10.439020	296.627680	140.0616	00000000000
337	111		S 1	0.001300	296.811530	145.5108	0000000000
338	111		03	397.193670	296.148400	147.3201	0000000000
555	;						
339	111		03	197.193100	103.851010	147.3199	0000000000
340	111		S1	200.001540	103.187430	145.5106	0000000000
341	111		S 2	210.438990	103.371870	140.0615	0000000000
342	111		04	215,655100	104,098560	138.9533	0000000000
343	111		01	151 650960	101 566360	60 9000	000000000000
244	111		01	251 650000	101.000000	60.9022	000000000000000000000000000000000000000
344	111		OT	22T.020300	490.433470	00.9024	00000000000
345	エエエ		04	15.655370	∠95.901380	⊥38.9534	00000000000

346	111	S2	10.438960	296.628090	140.0617	0000000000
347	111	S1	0.001880	296.812280	145.5109	0000000000
348	111	03	397.193870	296.148700	147.3202	0000000000
557	;					
349	111	03	197.193670	103.851270	147.3199	0000000000
350	111	S1	200.001490	103.187450	145.5106	0000000000
351	111	s2	210.439150	103.371560	140.0614	0000000000
352	111	04	215.654870	104.098510	138.9533	0000000000
353	111	01	151.651040	101.566740	60.9022	0000000000
354	111	01	351.650580	298.432980	60.9024	0000000000
355	111	04	15.655320	295.901240	138.9535	0000000000
356	111	S2	10.439110	296.627740	140.0619	0000000000
357	111	S1	0.001590	296.812320	145.5111	0000000000
358	111	03	397.193800	296.147890	147.3202	0000000000
559	;					
359	111	03	197.193060	103.850940	147.3199	0000000000
360	111	S1	200.001990	103.187460	145.5104	0000000000
361	111	s2	210.439020	103.371150	140.0614	0000000000
362	111	04	215.655180	104.098820	138.9532	0000000000
363	111	01	151.651080	101.566260	60.9021	0000000000
364	111	01	351.651120	298.433090	60.9024	0000000000
365	111	04	15.654450	295.901320	138.9534	0000000000
366	111	S2	10.438870	296.628260	140.0616	0000000000
367	111	S1	0.001530	296.812080	145.5108	0000000000
368	111	03	397.193520	296.148500	147.3201	0000000000
161	161					

»Ta stran je namenoma prazna.«

PRILOGA B: LisCad POROČILO O SREDINAH GIRUSOV (LisCad report.txt) – prva terminska izmera 21. 04. 2015.

LISCAD Report: Rot	unds Report				
Thursday, May 21,	2015 13:13				
Units	File: Projection: File Date:	Mateo Plane grid Thursday, May 21	, 2015		
	Angle: Distance:	Degrees Minutes Metres	Seconds		
At S1					
To O2 (Backsight	reduced to z	ero)			
Horizontal			Vertical	Face Diff.	Residual
0 00 00.000			87 08 11.098 87 08 11 276		0 00 00.125
0 00 00.000			87 08 10.806	0 00 00.713	-0 00 00.167
0 00 00.000			87 08 10.871	0 00 00.583	-0 00 00.102
0 00 00.000			87 08 10.741	-0 00 00.259	-0 00 00.231
0 00 00.000			87 08 11.146	-0 00 00.616	0 00 00.174
0 00 00.000			87 08 10.871	-0 00 01.102	-0 00 00.102
Mean of Sets.			Vertical	CD Vort	Danga
0 00 00.000			87 08 10.973	0 00 00.200	
Distance	SD Dist.	Range	0, 00 10.975	0 00 00.200	0 00 00.555
145.51113	0.00011	0.00040			
To 01					
Horizontal	Split	Residual	Vertical	Face Diff.	Residual
22 30 21.870 22 30 22 016	0 00 00.389		80 58 53.5/5	0 00 01.782	
22 30 22.826	0 00 00.486		86 58 53.461	0 00 01.555	0 00 00.056
22 30 22.874	0 00 00.065	0 00 00.458	86 58 53.785	0 00 01.426	0 00 00.380
22 30 22.550	0 00 00.389	0 00 00.134	86 58 53.672	0 00 02.106	0 00 00.266
22 30 22.550	0 00 00.713	0 00 00.134	86 58 52.910	0 00 00.324	-0 00 00.495
22 30 22.226	0 00 00.454	-0 00 00.190	86 58 53.137	0 00 01.102	-0 00 00.268
Mean of Sets.		Damma	Manti as l	dD March	Denes
HOTIZONTAL 22 30 22 416	5D D1F.		Vertical 86 58 53 406	SD. Vert.	Range
Distance	SD Dist.	Range	80 38 33.400	0 00 00.310	0 00 00.875
109.67034	0.00010	0.00030			
То ОЗ					
Horizontal	Split	Residual	Vertical	Face Diff.	Residual
103 41 27.933	-0 00 02.754		103 40 19.277	-0 00 03.791	-0 00 00.456
103 41 28.694	-0 00 04.730	0 00 00.356	103 40 19.909	-0 00 03.953	0 00 00.176
103 41 28.824	-0 00 05.184	0 00 00.486	103 40 19.812	-0 00 04.212	0 00 00.079
103 41 28.095	-0 00 05.022	-0 00 00.243	103 40 19.780	-0 00 04.018	0 00 00.046
103 41 28.711	-0 00 05.281	0 00 00.373	103 40 19.715	-0 00 04.536	-0 00 00.019
103 41 28.225	-0 00 05.281	-0 00 00.113	103 40 19.942	-0 00 04.536	0 00 00.208
Mean or Sets.	sn nir	Pange	Vertical	SD Vort	Pange
103 41 28.338	0 00 00.397		103 40 19.733	0 00 00.221	0 00 00.664
Distance	SD Dist.	Range			
6.86947	0.00006	0.00020			
T - 60					
TO SZ	en1:+	Posidual	Vertical	Face Diff	Posidual
287 49 12.972	0 00 00.454	0 00 00.613	90 19 03.202		0 00 00 280
287 49 10.769	0 00 03.434	-0 00 01.590	90 19 03.218	-0 00 01.264	0 00 00.296
287 49 13.960	-0 00 01.393	0 00 01.601	90 19 02.440	-0 00 00.162	-0 00 00.481
287 49 12.373	0 00 01.069	0 00 00.014	90 19 02.991	-0 00 01.134	0 00 00.069
287 49 11.984	0 00 03.791	-0 00 00.375	90 19 04.044	-0 00 00.454	0 00 01.122
287 49 11.854			90 19 02.489		
20/ 49 12.599 Mean of Sete	-0 00 03.337	0 00 00.241	AN TA N7*NP8	-0 00 00.454	-0 00 00.854
Horizontal	SD Dir.	Range	Vertical	SD. Vert.	Range
287 49 12.359	0 00 00.993	0 00 03.191	90 19 02.922	0 00 00.656	0 00 01.976
Distance	SD Dist.	Range			
23.97991	0.00011	0.00030			

То 04					
Horizontal	Split	Residual	Vertical	Face Diff.	Residual
287 47 35.610	0 00 01.361	-0 00 01.882	92 40 50.356	0 00 00.745	0 00 01.976
287 47 37.813	0 00 05.638	0 00 00.322	92 40 47.570	-0 00 00.940	-0 00 00.810
287 47 38.234	-0 00 07.646	0 00 00.743	92 40 45.804	0 00 02.657	-0 00 02.576
287 47 37.586	0 00 01.231	0 00 00.095	92 40 47.554	0 00 00.907	-0 00 00.826
287 47 39.239	0 00 06.480	0 00 01.747	92 40 51.085	-0 00 01.620	0 00 02.705
287 47 36.906	-0 00 02.333	-0 00 00.586	92 40 47.926	0 00 00.292	-0 00 00.454
287 47 37.052	-0 00 04.374	-0 00 00.440	92 40 48.364	0 00 02.462	-0 00 00.016
Mean of Sets.	_				
Horizontal	SD Dir.	Range	Vertical	SD. Vert.	Range
287 47 37.492	0 00 01.140	0 00 03.629	92 40 48.380	0 00 01.798	0 00 05.281
Distance	SD Dist.	Range			
35.48761	0.00012	0.00040			
At S2					
TO 02 (Backsight	reduced to ze	ro)			
Horizontal			Vertical	Face Diff.	Residual
0 00 00.000			86 58 14.484	0 00 01.426	0 00 00.169
0 00 00.000			86 58 14.063	0 00 02.203	-0 00 00.252
0 00 00.000			86 58 14.176	0 00 01.523	-0 00 00.139
0 00 00.000			86 58 14.419		0 00 00.104
0 00 00.000			86 58 14.403	0 00 01.847	0 00 00.088
0 00 00.000			86 58 14.160	0 00 01.102	-0 00 00.155
0 00 00.000			86 58 14.500	0 00 02.236	0 00 00.185
Mean of Sets.				<i>.</i>	_
Horizontal			Vertical	SD. Vert.	Range
0 00 00.000		_	86 58 14.315	0 00 00.177	0 00 00.437
Distance	SD Dist.	Range			
140.06187	0.00012	0.00040			
10 01					
HOTIZONTAL	Spiit	Residual	Vertical	Face Diff.	Residual
25 12 47.158	-0 00 01.393	0 00 00.4//	87 02 02.920	0 00 02.106	0 00 00.359
25 12 46.883	0 00 00.648	0 00 00.201	87 02 02.353	0 00 03.175	-0 00 00.208
25 12 47.126	0 00 00.356	0 00 00.444	87 02 02.321	0 00 02.268	-0 00 00.241
25 12 46.980	0 00 01.426	0 00 00.299	87 02 02.450	0 00 04.018	-0 00 00.111
25 12 46.980	0 00 00.713	0 00 00.299	87 02 02.872		0 00 00.310
25 12 45.344	-0 00 01.264	-0 00 01.338	87 02 02.224	0 00 01.620	-0 00 00.338
25 12 46.300	0 00 01.231	-0 00 00.382	87 02 02.791	0 00 01.976	0 00 00.229
Mean of Sets.		.	······································	an track	.
Horizontal	SD Dir.	Range	Vertical	SD. Vert.	Range
25 12 46.681	0 00 00.656	0 00 01.814	87 02 02.561	0 00 00.290	0 00 00.697
Distance	SD Dist.	Range			
114.162/1	0.00010	0.00040			
To 03					
Horigontal	Coli+	Pogidual	Vortigal	Face Diff	Pogidual
07 21 45 222			02 /7 17 802	Face DIII.	
97 31 45 037	-0 00 02.208	0 00 00.308	92 47 17.095 02 47 17 229	0 00 03.143	-0 00 00.319
97 31 43 410			92 47 15 738	0 00 05.303	-0 00 00.345
97 31 44 155	-0 00 02.555	-0 00 01.344	92 47 15 592	0 00 05.032	-0 00 01.035
97 31 46 261	0 00 04 212	0 00 01 308	92 47 21 019	0 00 00.201	0 00 03 446
97 31 45 403	-0 00 04.212	0 00 01.300	92 47 15 689	0 00 05.575	-0 00 01 884
97 31 44 188	-0 00 04.033	-0 00 00.119	92 47 19 952	0 00 00.233	0 00 01.004
Mean of Sets	-0 00 00.020	-0 00 00.700	JZ 47 19.033	0 00 02.031	0 00 02.200
Horizontal	sn nir	Pange	Vertical	SD Vert	Range
97 31 44 954			02 47 17 573		
Distance		Dange	JZ 4/ 1/.J/J	0 00 02.105	0 00 05.427
30 67691	0 00012	0 00040			
50.070J1	3.00012				
То 04					
Horizontal	Split	Residual	Vertical	Face Diff.	Residual
278 20 53.074	-0 00 06.934	0 00 01.599	97 34 42.695	0 00 00.162	-0 00 00.815
278 20 50.060	-0 00 00.259	-0 00 01.414	97 34 43.846	-0 00 00.583	0 00 00.336
278 20 51.016	-0 00 05.864	-0 00 00.458	97 34 44.396	0 00 00.518	0 00 00.886
278 20 51.794	-0 00 02.495	0 00 00.319	97 34 43.036	-0 00 00.778	-0 00 00.474
278 20 52.377	-0 00 06.188	0 00 00.903	97 34 43.748	-0 00 01.166	0 00 00.238
278 20 51.243	-0 00 03.856	-0 00 00.231	97 34 43.214	-0 00 00.810	-0 00 00.296
278 20 50.757	-0 00 00.356	-0 00 00.717	97 34 43.635	0 00 00.227	0 00 00.125
Mean of Sets.					
Horizontal	SD Dir.	Range	Vertical	SD. Vert.	Range
278 20 51.474	0 00 01.021	0 00 03.013	97 34 43.510	0 00 00.570	0 00 01.701
Distance	SD Dist.	Range			
11.57089	0.0007	0.00020			

Horizontal 98 25 42.098 98 25 45.046 98 25 40.802 98 25 39.830 98 25 42.697 98 25 40.381 98 25 39.911 Mean of Sets. Horizontal 98 25 41.538 Distance 23.97995	Split -0 00 04.115 0 00 01.134 -0 00 07.744 -0 00 03.920 -0 00 05.897 -0 00 03.596 -0 00 00.259 SD Dir. 0 00 01.889 SD Dist. 0.00011	Residual 0 00 00.560 0 00 03.508 -0 00 00.736 -0 00 01.708 0 00 01.159 -0 00 01.157 -0 00 01.627 Range 0 00 05.216 Range 0.00030	Vertical 89 41 10.277 89 41 08.770 89 41 06.211 89 41 08.106 89 41 07.280 89 41 07.183 89 41 08.203 Vertical 89 41 08.004	Face Diff. 0 00 01.685 0 00 00.940 0 00 03.078 -0 00 02.462 0 00 02.884 0 00 04.244 0 00 01.555 SD. Vert. 0 00 01.305	Residual 0 00 02.273 0 00 00.766 -0 00 01.794 0 00 00.102 -0 00 00.724 -0 00 00.822 0 00 00.199 Range 0 00 04.066
At O1 To O3 (Backsight	reduced to ze	ro)			
Horizontal 0 00 00.000 0 00 00.000 0 00 00.000 0 00 00.000 0 00 00.000 0 00 00.000 0 00 00.000 Mean of Sets. Horizontal			Vertical 93 53 55.000 93 53 55.567 93 53 56.668 93 53 54.854 93 53 55.761 93 53 55.194 93 53 55.000 Vertical	Face Diff. 0 00 04.795 0 00 02.495 0 00 03.272 0 00 04.180 0 00 04.180 0 00 04.860 0 00 00.778 SD. Vert.	Residual -0 00 00.435 0 00 00.132 0 00 01.234 -0 00 00.581 0 00 00.326 -0 00 00.241 -0 00 00.435 Range
0 00 00.000 Distance	SD Dist.	Range	93 53 55.435	0 00 00.635	0 00 01.814
108.94661	0.00014	0.00050			
To S1 Horizontal 3 28 43.540 3 28 43.394 3 28 44.042 3 28 43.297 3 28 43.621 3 28 43.621 3 28 43.718 3 28 44.252 Mean of Sets. Horizontal 3 28 43.695 Distance 109.67020	Split 0 00 00.130 -0 00 00.486 -0 00 03.791 -0 00 00.421 -0 00 01.652 -0 00 01.361 SD Dir. 0 00 00.344 SD Dist. 0.00020	Residual -0 00 00.155 -0 00 00.301 0 00 00.347 -0 00 00.398 -0 00 00.074 0 00 00.023 0 00 00.558 Range 0 00 00.956 Range 0.00050	Vertical 93 01 23.322 93 01 24.505 93 01 24.424 93 01 24.051 93 01 24.067 93 01 24.019 Vertical 93 01 24.137	Face Diff. 0 00 06.610 0 00 05.670 0 00 06.415 0 00 04.892 0 00 05.800 0 00 05.702 0 00 03.726 SD. Vert. 0 00 00.427	Residual -0 00 00.815 0 00 00.368 0 00 00.287 -0 00 00.086 0 00 00.433 -0 00 00.069 -0 00 00.118 Range 0 00 01.247
To S2 Horizontal	Split	Residual	Vertical	Face Diff.	Residual
15 34 44.546 15 34 45.356 15 34 44.918 15 34 44.627 15 34 45.161 15 34 45.761 15 34 45.048 Mean of Sets. Horizontal 15 34 45.060 Distance 114.16251	-0 00 00.810 -0 00 01.523 -0 00 01.750 0 00 00.130 0 00 00.162 -0 00 01.879 -0 00 01.490 SD Dir. 0 00 00.421 SD Dist. 0.00017	-0 00 00.514 0 00 00.296 -0 00 00.141 -0 00 00.433 0 00 00.102 0 00 00.701 -0 00 00.012 Range 0 00 01.215 Range 0.00040	92 58 13.409 92 58 14.041 92 58 14.592 92 58 14.770 92 58 15.013 92 58 13.814 92 58 13.879 Vertical 92 58 14.217	0 00 06.836 0 00 05.378 0 00 07.193 0 00 04.180 0 00 04.795 0 00 05.832 0 00 04.601 SD. Vert. 0 00 00.583	-0 00 00.808 -0 00 00.176 0 00 00.375 0 00 00.553 0 00 00.796 -0 00 00.403 -0 00 00.338 Range 0 00 01.604
То 04					
Horizontal 20 55 23.747 20 55 24.217 20 55 23.455 20 55 23.698 20 55 23.050 20 55 24.557 20 55 23.990 Mean of Sets. Horizontal 20 55 23.816 Distance	Split -0 00 00.518 -0 00 01.523 -0 00 02.851 -0 00 01.199 -0 00 01.588 -0 00 01.555 -0 00 01.717 SD Dir. 0 00 00.496 SD Dist.	Residual -0 00 00.069 0 00 00.400 -0 00 00.361 -0 00 00.766 0 00 00.741 0 00 00.174 Range 0 00 01.507 Range	Vertical 93 36 47.628 93 36 48.973 93 36 49.475 93 36 48.859 93 36 49.199 93 36 48.762 93 36 48.956 Vertical 93 36 48.836	Face Diff. 0 00 06.026 0 00 02.560 0 00 04.730 0 00 03.240 0 00 03.013 0 00 03.953 0 00 02.981 SD. Vert. 0 00 00.583	Residual -0 00 01.208 0 00 00.137 0 00 00.639 0 00 00.023 0 00 00.363 -0 00 00.074 0 00 00.120 Range 0 00 01.847
118.08385	0.00013	0.00040			
To O2 Horizontal	Split	Residual	Vertical	Face Diff.	Residual

117 27 25.483	-0 00 03.208	-0 00 00.190	88 35 39.930	0 00 05.314	0 00 00.146
117 27 26.584	-0 00 03.467	0 00 00.912	88 35 40.076	0 00 03.208	0 00 00.292
117 27 25.628	-0 00 02.981	-0 00 00.044	88 35 39.849	0 00 02.171	0 00 00.065
117 27 24.624	-0 00 01.490	-0 00 01.048	88 35 39.363	0 00 03.532	-0 00 00.421
117 27 25.515	-0 00 01.264	-0 00 00.157	88 35 39.509	0 00 03.953	-0 00 00.275
117 27 25.774	-0 00 03.208	0 00 00.102	88 35 39.800	0 00 03.110	0 00 00.016
117 27 26.098	-0 00 03.661	0 00 00.426	88 35 39.962	0 00 03.110	0 00 00.178
Mean or sets.		Danga	Ventical	CD Vort	Danga
117 27 25 672			88 35 39 784	5D. Vert.	
Distance	SD Diet	Range	00 33 39.704	0 00 00.257	0 00 00.713
60,90241	0.00010	0.00030			
At 02					
To O3 (Backsight	reduced to ze	ro)			
Horizontal			Vertical	Face Diff.	Residual
0 00 00.000			93 27 57.046	0 00 05.573	-0 00 01.034
0 00 00.000			93 27 58.212	0 00 01.555	0 00 00.132
0 00 00.000			93 27 58.585	0 00 03.791	0 00 00.505
0 00 00.000			93 27 57.548	0 00 03.272	-0 00 00.532
			93 27 57.742		-0 00 00.338
0 00 00.000			93 27 57.953	0 00 01.814	-0 00 00.127
Mean of Sets.					• •• •••==
Horizontal			Vertical	SD. Vert.	Range
0 00 00.000			93 27 58.080	0 00 00.786	0 00 02.430
Distance	SD Dist.	Range			
147.32002	0.00014	0.00040			
To S1					
Horizontal	Split	Residual	Vertical	Face Diff.	Residual
2 31 40.156	0 00 01.814	0 00 01.472	92 52 06.820	0 00 01.685	-0 00 01.104
2 31 37.661	-0 00 00.130		92 52 07.873	0 00 03.726	-0 00 00.051
2 31 39.524 2 31 39 066	-0 00 04.568		92 52 08.504	0 00 01.944	0 00 00.581
2 31 38 649	-0 00 02.089		92 52 08.099	0 00 03.888	
2 31 37,288		-0 00 01.396	92 52 07.711	0 00 00.745	-0 00 00.213
2 31 39.443	-0 00 02.981	0 00 00.759	92 52 08.116	0 00 01.490	0 00 00.192
Mean of Sets.					
Horizontal	SD Dir.	Range	Vertical	SD. Vert.	Range
2 31 38.684	0 00 01.067	0 00 02.867	92 52 07.924	0 00 00.616	0 00 01.879
Distance	SD Dist.	Range			
145.51069	0.00020	0.00070			
To S2	d =1.4 +	Desiduel	Manti da 1	Rese Diff	Desidual
HOTIZONTAL			Vertical	Face Diff.	
11 55 16.840 11 55 16 765		0 00 00.680	93 02 04.583	0 00 01.328	-0 00 00.162
11 55 17,299	-0 00 00.010	0 00 00.333	93 02 04.259	0 00 02.041	-0 00 00.162
11 55 15.857	-0 00 01.847	-0 00 00.308	93 02 04.778	0 00 03.078	0 00 00.356
11 55 15.388	-0 00 02.592	-0 00 00.778	93 02 04.924	0 00 00.130	0 00 00.502
11 55 15.080	-0 00 00.551	-0 00 01.085	93 02 04.988	0 00 02.268	0 00 00.567
11 55 15.922	-0 00 01.976	-0 00 00.243	93 02 03.482	0 00 01.912	-0 00 00.940
Mean of Sets.					
Horizontal	SD Dir.	Range	Vertical	SD. Vert.	Range
11 55 16.165	0 00 00.821	0 00 02.219	93 02 04.421	0 00 00.559	0 00 01.507
Distance	SD Dist.	Range			
140.06153	0.00015	0.00060			
To 04					
Horizontal	enli+	Regidual	Vertical	Face Diff	Regidual
16 36 55 649			93 41 19 432		-0 00 00 268
16 36 55.066	-0 00 00.130	-0 00 00.683	93 41 20.112	-0 00 01.620	0 00 00.412
16 36 56.929	-0 00 06.383	0 00 01.180	93 41 19.691	0 00 01.102	-0 00 00.009
16 36 56.378	-0 00 03.337	0 00 00.629	93 41 19.707	-0 00 00.292	0 00 00.007
16 36 56.070	-0 00 01.620	0 00 00.322	93 41 19.432	0 00 00.194	-0 00 00.268
16 36 54.806	0 00 01.037	-0 00 00.942	93 41 19.577	0 00 00.810	-0 00 00.123
16 36 55.341	-0 00 03.856	-0 00 00.407	93 41 19.950	-0 00 00.454	0 00 00.250
Mean of Sets.					
Horizontal	SD Dir.	Range	Vertical	SD. Vert.	Range
16 36 55.748	0 00 00.755	U UU U2.122	93 41 19.700	0 00 00.255	0 00 00.680
Distance	0 00012	Range			
130.93320	0.00012	0.00050			
To 01					
Horizontal	Split	Residual	Vertical	Face Diff.	Residual
319 00 42 883	-0 00 02 398	0 00 00 623	01 24 25 195	-0 00 01 069	0 00 00 454

00 4	12.543	-0	00	02.041	0	00	00.282	91	24	35.735	-0	00	00.356	0	00	00.097
00 4	12.106	-0	00	06.674	-0	00	00.155	91	24	36.140	0	00	00.778	0	00	00.502
00 4	12.008	-0	00	04.925	-0	00	00.252	91	24	34.699	0	00	03.013	-0	00	00.940
00 4	12.057	-0	00	02.171	-0	00	00.204	91	24	35.282	0	00	00.551	-0	00	00.356
00 4	10.923	-0	00	01.912	-0	00	01.338	91	24	36.691	0	00	00.907	0	00	01.053
00 4	13.304	-0	00	01.361	0	00	01.044	91	24	35.735	0	00	02.106	0	00	00.097
of Se	ets.															
loriz	ontal		S	SD Dir.			Range		Ve	ertical		SD	. Vert.			Range
00 4	12.261	0	00	00.761	0	00	02.381	91	24	35.638	0	00	00.658	0	00	01.993
Dista	ance	SD	Dis	st.	Ra	ang	e									
50.90	229	0.	000)14	0.0	004	0									
	00 4 00 4 00 4 00 4 00 4 00 4 00 4 00 4	00 42.543 00 42.106 00 42.008 00 42.057 00 40.923 00 43.304 of Sets. Horizontal 00 42.261 Distance 50.90229	00 42.543 -0 00 42.106 -0 00 42.008 -0 00 42.057 -0 00 40.923 -0 00 43.304 -0 off Sets. -0 Horizontal 00 00 42.261 0 Distance SD 50.90229 0.	00 42.543 -0 00 00 42.106 -0 00 00 42.008 -0 00 00 42.057 -0 00 00 40.923 -0 00 00 43.304 -0 00 of Sets. -0 00 00 00 42.261 0 00 00 stance SD Dis 50.90229 0.000	00 42.543 -0 00 02.041 00 42.106 -0 00 06.674 00 42.008 -0 00 04.925 00 42.057 -0 00 02.171 00 40.923 -0 00 01.912 00 43.304 -0 00 01.361 of Sets. SD Dir. 00 42.261 0 00 00.761 Distance SD Dist. 50.90229 0.00014	00 42.543 -0 00 02.041 0 00 42.106 -0 00 06.674 -0 00 42.008 -0 00 04.925 -0 00 42.057 -0 00 02.171 -0 00 40.923 -0 00 01.912 -0 00 43.304 -0 00 01.361 0 off Sets. SD Dir. 0 00 42.261 0 00 00.761 0 0istance SD Dist. Ra S0 0.00	00 42.543 -0 00 02.041 0 00 00 42.106 -0 00 06.674 -0 00 00 42.008 -0 00 04.925 -0 00 00 42.057 -0 00 02.171 -0 00 00 40.923 -0 00 01.912 -0 00 00 43.304 -0 00 01.361 0 00 off Sets. SD Dir. 00 00 01.761 0 00 01 42.261 0 00 00.761 0 00<	00 42.543 -0 00 02.041 0 00 00.282 00 42.106 -0 00 06.674 -0 00 00.155 00 42.008 -0 00 04.925 -0 00 00.252 00 42.057 -0 00 02.171 -0 00 00.204 00 40.923 -0 00 01.912 -0 00 01.338 00 43.304 -0 00 01.361 0 00 01.044 of Sets. - SD Dir. Range 00 42.261 0 00 00.761 0 00 02.381 Distance SD Dist. Range 0.00040 0.00040	00 42.543 -0 00 02.041 0 00 00.282 91 00 42.106 -0 00 06.674 -0 00 00.155 91 00 42.008 -0 00 04.925 -0 00 00.252 91 00 42.057 -0 00 02.171 -0 00 00.204 91 00 40.923 -0 00 01.912 -0 00 01.338 91 00 43.304 -0 00 01.361 0 00 01.044 91 of Sets. - - Range 0 0 0.00 0.02.381 91 otstance SD Dist. Range - 0.00040 0.00040	00 42.543 -0 00 02.041 0 00 00.282 91 24 00 42.106 -0 00 06.674 -0 00 00.155 91 24 00 42.008 -0 00 04.925 -0 00 00.252 91 24 00 42.057 -0 00 02.171 -0 00 00.204 91 24 00 40.923 -0 00 01.912 -0 00 01.338 91 24 00 43.304 -0 00 01.361 0 00 01.044 91 24 of Sets. -0 00 01.361 0 00 01.044 91 24 of sets. -0 0 00 0.761 0 00 02.381 91 24 oistance SD Dist. Range V4 0.00040 0.00040	00 42.543 -0 00 02.041 0 00 00.282 91 24 35.735 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 00 42.057 -0 00 02.171 -0 00 00.252 91 24 35.282 00 40.923 -0 00 01.912 -0 00 01.338 91 24 35.735 0f sets. -0 00 01.361 0 00 01.044 91 24 35.735 of sets. -0 00 00 01.044 91 24 35.735 of sets. -0 00 00 00 02.381 91 24 35.638 oistance SD Dist. Range Vertical 0.00040 0.00040	00 42.543 -0 00 02.041 0 00 00.282 91 24 35.735 -0 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 0 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 0 00 42.057 -0 00 00.252 91 24 35.282 0 00 42.057 -0 00 01.204 91 24 35.282 0 00 40.923 -0 00 01.338 91 24 36.691 0 00 43.304 -0 00 01.361 0 00 01.044 91 24 35.735 0 of sets. -0 50 Dir. Range Vertical 0 0 0 24 35.638 0 oistance SD Dist. Range 0.00040 0.00040 0.00040 0.00040 0.00040	00 42.543 -0 00 02.041 0 00 02.282 91 24 35.735 -0 00 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 0 00 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 0 00 00 42.057 -0 00 02.252 91 24 35.282 0 00 00 42.057 -0 00 01.338 91 24 35.282 0 00 00 40.923 -0 00 01.338 91 24 35.735 0 00 00 43.304 -0 00 01.361 0 00 01.044 91 24 35.735 0 00 off Sets. -0 00 00 0.2.381 91 24 35.638 0 00 Otstance SD Dist. Range 0.00040	00 42.543 -0 00 02.041 0 00 02.82 91 24 35.735 -0 00 00.356 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 0 00 00.778 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 0 00 03.013 00 42.057 -0 00 02.252 91 24 35.282 0 00 03.013 00 40.923 -0 00 01.318 91 24 35.282 0 00 00.907 043.304 -0 00 01.361 0 00 01.044 91 24 35.735 0 00 02.106 of Stat. SD Dir. Range Vertical SD. Vert. 0 0 00 00 00 00 00 0.658 of SD Dist. Range 0.00014 <t< td=""><td>00 42.543 -0 00 02.041 0 00 02.282 91 24 35.735 -0 00 00.356 0 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 0 00 00.778 0 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 0 00 00.778 0 00 42.057 -0 00 00.252 91 24 35.282 0 00 00.551 -0 00 40.923 -0 00 01.338 91 24 35.735 0 00 00.907 0 00 43.304 -0 00 01.361 0 00 01.044 91 24 35.735 0 00 02.106 0 of sets. -0 00 01.044 91 24 35.638 0 00 00 00 0.00 0.00 0.00 0.00 <t< td=""><td>00 42.543 -0 00 02.041 0 00 02.282 91 24 35.735 -0 00 00.356 0 0 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 0 00 00.778 0 0 0 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 0 00 0.0778 0 0 0 0 0 0 0.00 <</td></t<></td></t<>	00 42.543 -0 00 02.041 0 00 02.282 91 24 35.735 -0 00 00.356 0 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 0 00 00.778 0 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 0 00 00.778 0 00 42.057 -0 00 00.252 91 24 35.282 0 00 00.551 -0 00 40.923 -0 00 01.338 91 24 35.735 0 00 00.907 0 00 43.304 -0 00 01.361 0 00 01.044 91 24 35.735 0 00 02.106 0 of sets. -0 00 01.044 91 24 35.638 0 00 00 00 0.00 0.00 0.00 0.00 <t< td=""><td>00 42.543 -0 00 02.041 0 00 02.282 91 24 35.735 -0 00 00.356 0 0 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 0 00 00.778 0 0 0 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 0 00 0.0778 0 0 0 0 0 0 0.00 <</td></t<>	00 42.543 -0 00 02.041 0 00 02.282 91 24 35.735 -0 00 00.356 0 0 00 42.106 -0 00 06.674 -0 00 00.155 91 24 36.140 0 00 00.778 0 0 0 00 42.008 -0 00 04.925 -0 00 00.252 91 24 36.140 0 00 0.0778 0 0 0 0 0 0 0.00 <

»Ta stran je namenoma prazna.«

PRILOGA C: VHODNA DATOTEKA ZA HORIZONTALNO IZRAVNAVO (polozaj.pod) – prva terminska izmera 21. 04. 2015.

*n 01 02 S1 S2 *0		88.8121 146.8798 76.4462 99.9715		131.0642 112.7613 239.8817 244.5262			
1 SI 1 SI 1 SI 1 SI 1 S1 1 S1 1 S2 1 O1 1 O1 1 O1 1 O1 1 O1 1 O1 1 O2 1 O2 2 SI 2 SI	02 01 03 22 04 02 01 03 22 04 02 03 04 1 03 20 04 02 03 20 04 02 03 20 04 02 03 20 04 02 03 20 04 02 03 20 04 02 03 20 04 02 03 20 04 02 03 20 04 02 03 20 04 03 20 04 03 20 04 03 20 04 03 20 04 03 20 04 03 20 04 03 20 04 03 20 04 03 20 04 03 20 03 20 04 03 20 00 20 00 20 00 20 00 20 00 20 00 00	0 25 115 319 0 28 108 309 109 0 3 17 23 130 0 2 13 130 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 21 80 77 0 1 36 27 36 27 36 27 36 27 36 31 24 45 31 23 24 45 35 445 35 445 35 445 335 446 45 335 446 45 335 446 45 335 446 45 335 446 11.466 23.979 909.511 117.856 45.322 39.866 30.647 23.979 30.647 23.979 30.647 23.979 30.647 23.979 30.647 23.979 30.647 35.446 11.466 23.979 30.647 39.866 30.888 45.322 39.866 60.888	0.000 69.185 24.500 1.108 8.309 0.000 44.077 57.265 51.463 46.722 0.000 53.380 2.037 80.914 79.234 0.000 82.358 57.299 16.506 74.880 028 884 487 971 905 677 032 077 988 972 552 856 016 0020 458 193 967 644 670 437	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 1.00000 1.0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DA DA DA DA DA DA DA DA DA DA DA DA DA D

»Ta stran je namenoma prazna.«
PRILOGA D: POROČILO POLOŽAJNE IZRAVNAVE PROGRAMA RamWin (polozaj.rez) – prva terminska izmera 21. 04. 2015.

Izravnava RAvninske geodetske Mreže Program: RAM, ver.4.0, dec. 02 Copyright (C) Tomaž Ambrožič & Goran Turk

Ime datoteke s podatki: polozaj.pod Ime datoteke za rezultate: polozaj.rez Ime datoteke za risanje slike mreže: polozaj.ris Ime datoteke za izračun premikov: polozaj.koo

Datum: 7. 8.2015 Čas: 9:34:18

Seznam koordinat DANIH točk

Točka		Y	Х
		(m)	(m)
03		70.0081	238.1196
04		111.2209	246.7633

Vseh točk je 2.

Seznam PRIBLIŽNIH koordinat novih točk

Točka	Y	Х
	(m)	(m)
01	88.8121	131.0642
02	146.8798	112.7613
S1	76.4462	239.8817
S2	99.9715	244.5262

Vseh točk je 4.

Pregled OPAZOVANJ

Štev.	Stojišče	Vizura	0pa:	zov	. smer	W (")	Utež	Dolžina	Du (m)	Utež	Gr
1	C1	02	0	(gra		0 000	1 0 0	(111)	(111)		1
1 2	S1 C1	02	25	0	60 195	0.000	1 00				1
2	51 C1	01	20 11E	21	09.105	0.000	1 00				1
2	51	03	210	21	24.500	0.000	1.00				1
4	SI	SZ	319	80	1.108	0.000	1.00				1
5	SI	04	319	11	8.309	0.000	1.00				T
б	S2	02	0	0	0.000	0.000	1.00				1
7	S2	01	28	1	44.077	0.000	1.00				1
8	S2	03	108	36	57.265	0.000	1.00				1
9	S2	04	309	27	51.463	0.000	1.00				1
10	S2	S1	109	36	46.722	0.000	1.00				1
11	01	03	0	0	0.000	0.000	1.00				1
12	01	S1	3	86	53.380	0.000	1.00				1
13	01	S2	17	31	2.037	0.000	1.00				1
14	01	04	23	24	80.914	0.000	1.00				1
15	01	02	130	50	79.234	0.000	1.00				1
16	02	03	0	0	0.000	0.000	1.00				1
17	02	S1	2	80	82.358	0.000	1.00				1
18	02	S2 S2	13	24	57 299	0 000	1 00				1
19	02	04	18	46	16 506	0 000	1 00				1
20	02	01	354	45	74 880	0 000	1 00				1
20	04	01	551	10	, 1.000	0.000	1.00				т
21	S1	02						145.3303	0.0000	1.00	

22	S1	01	109.5188	0.0000	1.00
23	S1	03	6.6749	0.0000	1.00
24	S1	S2	23.9797	0.0000	1.00
25	S1	04	35.4490	0.0000	1.00
26	S2	02	139.8668	0.0000	1.00
27	S2	01	114.0103	0.0000	1.00
28	S2	03	30.6408	0.0000	1.00
29	S2	04	11.4699	0.0000	1.00
30	S2	S1	23.9797	0.0000	1.00
31	01	03	108.6955	0.0000	1.00
32	01	S1	109.5186	0.0000	1.00
33	01	S2	114.0102	0.0000	1.00
34	01	04	117.8502	0.0000	1.00
35	01	02	60.8846	0.0000	1.00
36	02	03	147.0519	0.0000	1.00
37	02	S1	145.3297	0.0000	1.00
38	02	S2	139.8664	0.0000	1.00
39	02	04	138.6667	0.0000	1.00
40	02	01	60.8844	0.0000	1.00

Podan srednji pogrešek utežne enote smeri (a-priori ocena): 1.00 sekund. Podan srednji pogrešek utežne enote dolžin (a-priori ocena): 1.010 mm.

Število enačb popravkov je					
- Število enačb popravkov za smeri je	20.				
- Število enačb popravkov za dolžine je	20.				
Število neznank je	12.				
- Število koordinatnih neznank je	8.				
- Število orientacijskih neznank je	4.				

POPRAVKI približnih vrednosti

	Točka	Dy	Dx	Do
		(m)	(m)	(")
01		0.0014	-0.0015	-2.5
02		0.0019	-0.0010	-2.2
S1		0.0003	-0.0009	3.3
S2		-0.0004	-0.0005	-3.2

IZRAVNANE vrednosti koordinat in ANALIZA natančnosti

Točka	Y	Х	My	Mx	Mp	а	b	Theta
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(st.)
01	88.8135	131.0627	0.0004	0.0003	0.0005	0.0004	0.0003	96.
02	146.8817	112.7603	0.0005	0.0003	0.0006	0.0005	0.0003	71.
S1	76.4465	239.8808	0.0003	0.0001	0.0003	0.0003	0.0000	76.
S2	99.9711	244.5257	0.0003	0.0001	0.0003	0.0003	0.0000	78.

Srednji pogrešek utežne enote /m0/ je 0.90983. [pvv] = 23.1783462901 [xx] vseh neznank = 32.6142484346 [xx] samo koordinatnih neznank = 0.0000102684 Srednji pogrešek aritmetične sredine /m_arit/ je 0.00021.

Srednji pogrešek smeri /m0*m0_smeri/ je 0.9098 sekund. Srednji pogrešek dolžin /m0*m0_dolžin/ je 0.9189 milimetrov.

Največji položajni pogrešek /Mp_max/ je 0.0006 metrov. Najmanjši položajni pogrešek /Mp_min/ je 0.0003 metrov. Srednji položajni pogrešek /Mp_sred/ je 0.0005 metrov. PREGLED opazovanih SMERI

Smerni koti in dolžine so izračunani iz zaokroženih koordinat. Smeri in smerni koti so izpisani v stopinjah.

Nova to	čka	: S1			Y =		76	5.4465	Х	=	239	.8808	
									Orie	enta	acijski	kot = 151	0 37.159
Vizura	Gr	Utež	Opa	azor	v. smer	Or	ient	. smer	Det	E. s	sm. kot	Popravek	Dolžina
02	1	1.00	0	0	0.000	151	0	37.159	151	0	35.805	-1.354	145.330
01	1	1.00	22	30	22.416	173	30	59.575	173	30	58.489	-1.086	109.519
03	1	1.00	103	41	28.338	254	42	5.497	254	42	4.379	-1.118	6.675
S2	1	1.00	287	49	12.359	78	49	49.518	78	49	50.508	0.990	23.979
04	1	1.00	287	47	37.492	78	48	14.651	78	48	17.218	2.567	35.449
Nova to	čka	: S2			Y =		99	9.9711	Х	=	244	.5257	
									Orie	enta	acijski	kot = 160	24 10.705
Vizura	Gr	Utež	Opa	azor	v. smer	Or	ient	. smer	Det	E. :	sm. kot	Popravek	Dolžina
02	1	1.00	0	0	0.000	160	24	10.705	160	24	12.432	1.727	139.867
01	1	1.00	25	12	46.681	185	36	57.386	185	36	58.438	1.052	114.010
03	1	1.00	97	31	44.954	257	55	55.659	257	55	54.602	-1.057	30.640
04	1	1.00	278	20	51.474	78	45	2.179	78	45	2.193	0.014	11.470
S1	1	1.00	98	25	41.538	258	49	52.243	258	49	50.508	-1.735	23.979
Nova to	čka	: 01			Y =		88	8.8135	х	=	131	.0627	
									Orie	enta	acijski	kot = 350	2 13.994
Vizura	Gr	Utež	Opa	azor	v. smer	Or	ient	. smer	Det	E. :	sm. kot	Popravek	Dolžina
03	1	1.00	0	0	0.000	350	2	13.994	350	2	13.843	-0.150	108.696
S1	1	1.00	3	28	43.695	353	30	57.689	353	30	58.489	0.800	109.519
S2	1	1.00	15	34	45.060	5	36	59.054	5	36	58.438	-0.616	114.010
04	1	1.00	20	55	23.816	10	57	37.810	10	57	38.228	0.418	117.850
02	1	1.00	117	27	25.672	107	29	39.666	107	29	39.214	-0.451	60.884
Nova to	čka	: 02			Y =		140	5.8817	х	=	112	.7603	
									Orie	enta	acijski	kot = 328	28 56.624
Vizura	Gr	Utež	Opa	azor	v. smer	Or	ient	. smer	Det	E. :	sm. kot	Popravek	Dolžina
03	1	1.00	0	0	0.000	328	28	56.624	328	28	56.229	-0.395	147.053
S1	1	1.00	2	31	38.684	331	0	35.308	331	0	35.805	0.497	145.330
S2	1	1.00	11	55	16.165	340	24	12.789	340	24	12.432	-0.357	139.867
04	1	1.00	16	36	55.748	345	5	52.372	345	5	52.297	-0.075	138.667

1 1.00 319 0 42.261 287 29 38.885 287 29 39.214 0.330

60.884

PREGLED merjenih DOLŽIN

01

Dolžine so izračunane iz zaokroženih koordinat. Adicijska konstanta ni bila izračunana (= 0 metra).

Od	Do	Utež	Merjena	Modulirana	Definitivna	Popravek	Projekcij.
točke	točke	dolž	dolžina	Mer.*Mk+Ak	ProjDu	Mod.dolž.	. iz koo.
S1	02	1.00	145.3303	145.3303	145.3298	-0.0005	145.3298
S1	01	1.00	109.5188	109.5188	109.5186	-0.0002	109.5186
S1	03	1.00	6.6749	6.6749	6.6749	0.0001	6.6749
S1	S2	1.00	23.9797	23.9797	23.9788	-0.0009	23.9788
S1	04	1.00	35.4490	35.4490	35.4489	-0.0001	35.4489
S2	02	1.00	139.8668	139.8668	139.8668	0.0000	139.8668
S2	01	1.00	114.0103	114.0103	114.0103	0.0000	114.0103
S2	03	1.00	30.6408	30.6408	30.6402	-0.0006	30.6402
S2	04	1.00	11.4699	11.4699	11.4702	0.0003	11.4702
S2	S1	1.00	23.9797	23.9797	23.9788	-0.0009	23.9788
01	03	1.00	108.6955	108.6955	108.6960	0.0005	108.6960
01	S1	1.00	109.5186	109.5186	109.5186	0.0000	109.5186
01	S2	1.00	114.0102	114.0102	114.0103	0.0001	114.0103
01	04	1.00	117.8502	117.8502	117.8504	0.0002	117.8504
01	02	1.00	60.8846	60.8846	60.8843	-0.0003	60.8843
02	03	1.00	147.0519	147.0519	147.0527	0.0008	147.0527
02	S1	1.00	145.3297	145.3297	145.3298	0.0001	145.3298
02	S2	1.00	139.8664	139.8664	139.8668	0.0004	139.8668
02	04	1.00	138.6667	138.6667	138.6669	0.0002	138.6669
02	01	1.00	60.8844	60.8844	60.8843	-0.0001	60.8843

»Ta stran je namenoma prazna.«

PRILOGA E: VHODNA DATOTEKA ZA VIŠINSKO IZRAVNAVO (visina.pod) – prva terminska izmera 21. 04. 2015.

*5			
*d			
'03'	10.00	000	
'04'	9.96	550	
*n			
'01'	17.10	504	
'02'	18.60	501	
'S1'	11.51	150	
'S2'	11.49	960	
*Е			
'km'			
*0			
'S1'	'02'	7.21464	0.145511
'S1'	'01'	5.71553	0.109670
'S1'	'03'	-1.44809	0.006895
'S1'	'S2'	0.11230	0.023980
'S1'	'04'	-1.48274	0.035487
'S2'	'02'	7.10205	0.140062
'S2'	'01'	5.60341	0.114163
'S2'	'03'	-1.56015	0.030677
'S2'	'04'	-1.59434	0.011571
'S2'	'S1'	-0.11230	0.023980
'01'	'03'	-7.16202	0.108947
'01'	'S1'	-5.71553	0.109671
'01'	'S2'	-5.60341	0.114163
'01'	'04'	-7.19598	0.118084
'01'	'02'	1.49889	0.060902
'02'	'03'	-8.65993	0.147320
'02'	'S1'	-7.21465	0.145511
'02'	'S2'	-7.10205	0.140063
'02'	'04'	-8.69456	0.138953
'02'	'01'	-1.49889	0.060903

»Ta stran je namenoma prazna.«

PRILOGA F: POROČILO VIŠINSKE IZRAVNAVE PROGRAMA ViMWin (visina.rez) – prva terminska izmera dne 21. 04. 2015.

Izravnava VIšinske geodetske Mreže Program: VIM, ver.5.0, mar. 07 Copyright (C) Tomaž Ambrožič & Goran Turk

Ime datoteke s podatki: visina.pod Ime datoteke za rezultate: visina.rez Ime datoteke za deformacijsko analizo: visina.def Ime datoteke za S-transformacijo: visina.str

Ime datoteke za izračun ocene natančnosti premika: visina.koo

Datum: 7. 8.2015 Čas: 11:47:41

NADMORSKE VIŠINE REPERJEV

Reper Nadm.viš. Opomba

03	10.00000	Dani	reper
04	9.96500	Dani	reper
01	17.16040	Novi	reper
02	18.66010	Novi	reper
S1	11.51500	Novi	reper
S2	11.49600	Novi	reper

Število vseh reperjev = 6 Število danih reperjev = 2 Število novih reperjev = 4

MERITVE VIŠINSKIH RAZLIK IN DOLŽIN

Reper	Reper	Merjena Merjena
zadaj	spredaj	viš.razlika dolžina
S1	02	7.21464 0.1455
S1	01	5.71553 0.1097
S1	03	-1.44809 0.0069
S1	S2	0.11230 0.0239
S1	04	-1.48274 0.0354
S2	02	7.10205 0.1401
S2	01	5.60341 0.1142
S2	03	-1.56015 0.0307
S2	04	-1.59434 0.0116
S2	S1	-0.11172 0.0239
01	03	-7.16202 0.1089
01	S1	-5.71368 0.1097
01	S2	-5.60125 0.1142
01	04	-7.19598 0.1181
01	02	1.49889 0.0609
02	03	-8.65993 0.1473
02	S1	-7.21183 0.1455
02	S2	-7.09989 0.1401
02	04	-8.69456 0.1390
02	01	-1.49849 0.0609

Število opazovanj = 20

Vektor normalnih enačb je zaseden 0.00 %.

ENAČBE POPRAVKOV VIŠINSKIH RAZLIK

Št.	Reper	Reper	Ко			
op.	zadaj	spredaj	al	a2	f	Utež
1	Q1	02	_1	1	-0 06954	6 8716
2	S1	01	-1.	1.	-0.07013	9.1155
3	S1	03	1.	Ο.	0.06691	145.6240
4	S1	S2	-1.	1.	-0.13130	41.8148
5	S1	04	1.	0.	0.06726	28.2135

S2	02	-1.	1.	0.06205	7.1397
S2	01	-1.	1.	0.06099	8.7602
S2	03	1.	Ο.	-0.06415	32.6243
S2	04	1.	0.	-0.06334	86.1475
S2	Sl	1.	-1.	-0.13072	41.8148
01	03	1.	Ο.	-0.00162	9.1788
01	Sl	1.	-1.	-0.06828	9.1155
01	S2	1.	-1.	0.06315	8.7602
01	04	1.	Ο.	-0.00058	8.4685
01	02	-1.	1.	0.00081	16.4201
02	03	1.	0.	0.00017	6.7880
02	Sl	1.	-1.	-0.06673	6.8716
02	S2	1.	-1.	0.06421	7.1397
02	04	1.	0.	0.00054	7.1968
02	01	1.	-1.	0.00121	16.4201
	 S2 S2 S2 S2 O1 O1 O1 O1 O2 O2 O2 O2 O2 O2 	S2 02 S2 01 S2 03 S2 04 S2 S1 01 03 01 S1 01 04 01 02 02 03 02 03 02 03 02 03 02 03 02 S1 02 S2 02 04 02 04 02 01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

IZRAČUNANI POPRAVKI VIŠINSKIH RAZLIK

===:					
Št.	Reper	Reper	Merjena	Popravek	Definitivna
op.	zadaj	spredaj	viš.razlika	viš.razlike	viš.razlika
1	S1	02	7.21464	-0.00194	7.21270
2	S1	01	5.71553	-0.00143	5.71410
3	S1	03	-1.44809	0.00024	-1.44785
4	S1	S2	0.11230	-0.00048	0.11182
5	S1	04	-1.48274	-0.00011	-1.48285
6	S2	02	7.10205	-0.00117	7.10088
7	S2	01	5.60341	-0.00114	5.60227
8	S2	03	-1.56015	0.00048	-1.55967
9	S2	04	-1.59434	-0.00033	-1.59467
10	S2	S1	-0.11172	-0.00010	-0.11182
11	01	03	-7.16202	0.00007	-7.16195
12	01	S1	-5.71368	-0.00042	-5.71410
13	01	S2	-5.60125	-0.00102	-5.60227
14	01	04	-7.19598	-0.00097	-7.19695
15	01	02	1.49889	-0.00028	1.49861
16	02	03	-8.65993	-0.00062	-8.66055
17	02	S1	-7.21183	-0.00087	-7.21270
18	02	S2	-7.09989	-0.00099	-7.10088
19	02	04	-8.69456	-0.00099	-8.69555
20	02	01	-1.49849	-0.00012	-1.49861

Srednji pogrešek utežne enote, m0 = 0.002995

Izračunano odstopanje = ****** mm (s = 1.786 km).

Dopustna odstopanja v nivelmanskem vlaku:

-	niv.	mreža	1.	reda	a		f	=	+-	1.5	5*SQRT(s+0.04*s2)	=	2.1	mm
-	niv.	mreža	2.	reda	a		f	=	+-	2.	*SQRT(s+0.04*s2)	=	2.8	mm
-	niv.	mreža	3.	reda	a		f	=	+-	5.	*SQRT(s+0.04*s2)	=	6.9	mm
-	niv.	mreža	4.	reda	a		f	=	+-	8.	*SQRT(s+0.06*s2)	=	11.3	mm
-	mesti	na niv	. mi	reža	1.	reda	f	=	+-	2.	*SQRT(s+0.04*s2)	=	2.8	mm
-	mesti	na niv	. m	reža	2.	reda	f	=	+-	3.	*SQRT(s+0.04*s2)	=	4.2	mm

IZRAVNANE NADMORSKE VIŠINE REPERJEV

=================	=======================================		
Približna višina	Popravek višine	Definitivna višina	Sred.pog. višine
17.16040	0.00188	17.16228	0.00050
18.66010	0.00090	18.66100	0.00053
11.51500	-0.06719	11.44781	0.00022
11.49600	0.06363	11.55963	0.00026
	Približna višina 17.16040 18.66010 11.51500 11.49600	Približna Popravek višina višine 17.16040 0.00188 18.66010 0.00090 11.51500 -0.06719 11.49600 0.06363	Približna Popravek Definitivna višina višine višina 17.16040 0.00188 17.16228 18.66010 0.00090 18.66100 11.51500 -0.06719 11.44781 11.49600 0.06363 11.55963

IZRAČUN OBČUTLJIVOSTI VIŠINSKE MREŽE

=========			===============		
Št. Reper op. zadaj	Reper j spredaj	Qll	Sred.pog. viš.razl.	Qvv	r
1 S1 2 S1 3 S1 4 S1	02 01 03 S2	0.01771 0.01556 0.00418 0.00587	0.00040 0.00037 0.00019 0.00023	0.12782 0.09415 0.00268 0.01804	0.87833 0.85821 0.39061 0.75447

5	S1	04	0.00418	0.00019	0.03126	0.88194
б	S2	02	0.01802	0.00040	0.12204	0.87132
7	S2	01	0.01594	0.00038	0.09822	0.86040
8	S2	03	0.00522	0.00022	0.02544	0.82982
9	S2	04	0.00522	0.00022	0.00639	0.55063
10	S2	S1	0.00587	0.00023	0.01804	0.75447
11	01	03	0.01537	0.00037	0.09358	0.85896
12	01	S1	0.01556	0.00037	0.09415	0.85821
13	01	S2	0.01594	0.00038	0.09822	0.86040
14	01	04	0.01537	0.00037	0.10272	0.86987
15	01	02	0.01775	0.00040	0.04316	0.70861
16	02	03	0.01748	0.00040	0.12984	0.88132
17	02	S1	0.01771	0.00040	0.12782	0.87833
18	02	S2	0.01802	0.00040	0.12204	0.87132
19	02	04	0.01748	0.00040	0.12147	0.87417
20	02	01	0.01775	0.00040	0.04316	0.70861

Skupno število nadštevilnosti je 16.00000000. Povprečno število nadštevilnosti je 0.80000000. »Ta stran je namenoma prazna.«