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Abstract

The paper presents some aspects of refined analysis of multilayered composite plates and shells.
Refined shell theory is based on a zig-zag (piece-wise linear) variation of displacement field through
the thickness, and on a Reissner's mixed variational formulation which allows an introduction of
independent transverse shear fields in each layer and an enforcement of the interlaminar shear stress
continuity. By relaxing basic assumptions, three additional models of interest are obtained. For the finite
element approximation we use a four-noded mixed finite element on the basis of assumed strain

variational approach.
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1. Introduction

In this paper we present a model for
composite structures of moderate thickness,
which is suitable for the transformation into a
relatively simple and efficient multilayered plate
and shell finite elements.

The model can be viewed as a refinement of
the first-order shear-deformation theory, and

requires only C O-continuity of displacements. It
avoids  dependence of unknown kinematic
variables on a number of layers, it satisfies
interlaminar equilibrium conditions, and it takes
into account discontinuity of derivatives of dis-
placements and transverse shear stresses (with
respect to  through-thickness coordinate) at
layer interfaces [16]. These features are
accomplished by two assump- tions: (A) of a
zig-zag variation of displacement jield

through the thickness of a laminate; and (B) of
layer- wise independent  quadratic transverse
shear stresses. The latter assumption is
introduced within the Reiss- ner's mixed
variational principle.

The model is in line with works of Murakami
[14], Bhaskar and Varadan [3] and Jing and
Tzeng [11] who derived linear theories for
composite plates, composite cylindrical shells and
composite general shells, respect- ively. Carrera
[8] and Carrera and Kroeplin[9] reformu- lated the
plate theory to be suitable for the finite element
approximation and derived some associated
linear and geometrically non-linear plate finite
el- ements. In this work we generalize the work of
Carrera [8] to shells. We present basic points of a
general non- linear model, and of three
additional formulations obtained by relaxing the
preceding basic assumptions. Among these four
models, two have been transformed to linear [7]
and two to large rotation geometrically non-
linear multilayered shell finite elements [4,5,10].



Authors are aware that an enormous number of
theoretical and computational models have been pro-
posed during the last three decades for an accurate
description of linear, non-linear, static or dynamic re-
sponse of multilayered composite shell-like structures.
Many review papers may be found on this topic e.g.
[15]. However, we believe that the formulation pro-
posed here has some interesting ingredients, such as: (i)
the model has only seven degrees of freedom indepen-
dently on number of layers; (ii) interlaminar continuity
of transverse shear stresses is obtained in a natural
way with clear variational background. We also believe
that by using recent concepts of modern shell models
e.g. [19], the present formulation can be extended to
include a reasonable accurate description of through-
the-thickness normal stress.

Refined multilayered shell finite elements developed
in this work are four-noded, so-called Assumed Natu-
ral Strain (ANS) elements. The ANS concept of Bathe
and Dvorkin [1] is used for through-element interp-
olation of transverse shear strain components, while
displacement interpolation is adopted for the mem-
brane and bending parts of the weak form of the
boundary value problem.

In what follows, we present basic features of the
developed model (and associated submodels) and give
some remarks on the finite element approximation.
Results of five numerical examples related to linear
plates, linear shells and non-linear shells are presented
and compared with available solutions. We shortly
comment on the effects of transverse shear defor-
mation, zig-zag form of displacement fields and interla-
minar shear stress continuity.

2. Basic concepts of a general model

2.1. Multilayered shell kinematic hypothesis

We consider a laminate of Ny,, layers of composite
materials as a thin-walled structure. Accordingly, we
perform independent parameterization of a reference
surface and of a fiber in the thickness direction. Para-
meterizations are carried out in terms of curvilinear
coordinates &: = (él, &2 &= 53) which define material
points of the shell. Reference placement of the lami-
nate in space R® is assumed to be defined as a set

B: = {X(8) | X(E) = M(¢", &) + ¢T(¢E', &%),
&el—h/2,h/21},

(D

where £ is the laminate thickness, M is a point of the
reference surface, and T is initial shell director. The co-
variant reference metric at a material point § is defined

in the standard way as G=[X - X ], where (0) ;= d(0)/
',

In this work we assume that the deformed laminate,
S < R?, is described by a set (assumption A)

S: = {x(8) | x(§) = m(&', &) + &4(E', &)
+/(Od(E", ), )

where m is a point of the deformed reference surface, t
is shell director in deformed configuration, f (¢) is a
layer dependent zig-zag function which is at layer K e
[1,N},y] defined as

x Sk
S =(=1) )2 3)
and d is a vector related to the wrinkling of laminate
cross-section. Coordinate &g is defined as &g € [—hg/
2,hkg/2], where hg is thickness of layer K. With
g=[x;-x,;] we denote the covariant current metrics at
a material point &.
To obtain a stable formulation in the limit of very
thin laminate, we introduce inextensibility constraint
on the shell-director

Tl =it = 1. “)
Its motion may be now expressed by rotation Q as
t=QT. ®)

Q is constrained by s - T=0, where s is an eigenvector
of Q (also called rotation vector or axial vector). Since
Q describes rotation of a single vector, Eq. (5), it is
defined by only two parameters, which may be Euler-
like angles, spherical coordinates, two components of
rotational vector, etc. These parameters, along with a
type of their update procedure in non-linear analysis,
greatly influence on numerical implementation and per-
formance of a finite element. Expression frequently
used to define rotation is so-called Rodrigues formula

sin sl , 1—cos [sll .
[Isll lIs]|?

Q= (©)

In Eq. (6) S is a skew symmetric matrix associated
with an axial vector s as Sh=s x b for any b e R>. Sys-
tematic classification of different choices of rotational
parameters is presented in recent work of Betsch et al.
[2]. Implementation details for Euler-like angles, two
components of rotational vector with additive update,
and two components of rotational vector with multipli-
cative update may be found in Brank et al. [4], [5] and
[6], respectively.

Vector d, which at material point (¢!, %) describes
wrinkling of the laminate cross-sections, is treated as
an element of the tangent plane to the current con-



figuration reference surface at point (¢!, £2). Accord-
ingly, it has to satisfy condition

d d
d~<a—;xa—;):o. (7

By exploiting constraints (4) and (7), we may get an
optimal parameterization of the laminate deformation.
At a reference surface point (él, £ 2) we have seven
independent kinematic variables, which may be col-
lected in a generalized displacement vector u as

(&, & —u=1[v,0,m,d,d] eR. (3)

Here v(&', ¢)=m(¢!, ¢)-M(&', &?) are displace-
ments of the reference surface point, oy, o, are two ro-
tational parameters, while d;, d, are (refined) variables
associated with the wrinkling of laminate cross sec-
tions.

2.2. Strain measures

The Green—Lagrange strain tensor, defined as
E = %(g —G), may be for the present problem split
into two parts: the in-plane part, E,, and the transverse
part, E;. The resulting tensors may be written as a sum

E, = E + CE} + f(OEL + (6VE2 + & (OE2S

+[SEPERT,

E, = E) + [ (OEM + f(OEN + £(O)f (OENT
+E(EEN, 9)

where [ (&)=df/d¢ is derivative of Eq. (3), and super-
scripts 0, 1 and 2 relate to the constant, linear and
quadratic parts of E, and E; tensors, respectively.

Application of the shell-like theory is reasonable
only when some restrictions are imposed on the magni-
tude of the thickness, the curvature and the strains of
the laminate. In this manner, we focus on a model
based only on the following strain tensors:

E, =E) + E| + f(OE)/,

E, =E) +f'(5E:". (10)

With respect to the first-order shear deformation the-
ory, E}q’f and E?’ represent additional (refined)
strains.

Note, that in Egs. (9) and (10) E’, E', f£,, E', f,, E
and E? /" denote strain tensors, while in what follows,
the same notation is related to the corresponding vec-
tors of strain tensor components, i.e.

0 0 0 09T 1 1 1 1 1T
En:[Ell’E22’2E12] > En:[Ell’EZZ’ZElZ] >

Ey/ = [Ey E5. 26 5]

E' =[2E%,2E%)", EY/ =RE%Y 2EY (11)
Explicit form of the above components may be
obtained through the definition of Green—Lagrange
strain tensor, and Egs. (10), (1) and (2).

2.3. Mixed variational principle

Let us assume, that the laminate is loaded only by
an internal and by an external pressure forces on the
inner surface, M ~, and on the outer surface, M *, re-
spectively. The Reissner’s mixed variational principle
for the present problem may then be stated as

51(u, o,;0u, 90;) :J (OE? -n + JE! - m + OE - q)dM
M

+ J (OEL/ -+ oM - §)dM
M

Ny chg/2 |
+J j b6, [~(C) "o,
M ,; —hg /2

+E? + f(E BN Tudé pdM

[ bduloge an

o

[ ptduls a0 ()
M+

where dM is an element of the reference surface at the
reference configuration, udé=dB/dM, p~ and p* are
surface pressure loadings, (Cﬁ()’1 is part of the layer
compliance matrix, and stress resultants and stress
couples are given as

Niay ohy/2 Niay ohg/2
n=Zj o, dé, m:Zj G, dé,
K=1Y—hk/2 K=1J—hk/2
Niay

hi/2
q= ZJ oude,
K=1J—hg/2

Niay

hi/2
m = 7 dg,
i I;J_Wcﬂfkm ¢

(13)

Niay

hix)2
i=> | orond
K=17—hk/2

where o, and oy are vectors with in-plane components
('', 6%, ¢'?) and transverse components (¢ ', ¢>*



of the second Piola—Kirchhoff stress tensor, respect-
ively.

For a layer Ke[l, Ny,y], we may now write vector of
transverse stresses, Oy, as (assumption B)

O = PKBK; (14)

where Py is transverse stress interpolation matrix, and
Bx is vector of layer unknown assumed transverse
stresses (stress parameters). Px and By are defined in
accordance with an assumption that the transverse
shear stresses vary quadratically through each layer.

The Reissner’s mixed variational principle enables us
to express layer-wise assumed transverse shear stresses,
collected in vector Bg, by generalized displacements.
Details of this procedure are given in [7]. Formally we
may write

Bx = Bx(w)=0,(u) = PB(u). (15)

During this process, the interlaminar equilibrium (the
continuity of interlaminar transverse shear stresses) is
obtained by satisfying the following conditions

ORI = G K e [1, Ny — 11,

O_?. bot — 6,13, bot if K = 17

3, t — 0 :
o P =GP f K = Ny, (16)
where ¢23®° and 6*'°P are applied shear stresses at

M~ and M " surfaces, respectively, while J“K3‘ Pt and
3
a’>'? are values of stresses ¢* at bottom and top

interface of layer K, respectively. Note, that of’ bt and

o7 P are elements of vector Bg. It should be also
noted, that by elimination of unknown stress par-
ameters through Egs. (15) and (16), we obtain the
weak form of constitutive equations between the trans-
verse shear stress resultants and the transverse shear
strains.

2.4. Multilayered constitutive relations

We assume that the material at each layer is ortho-
tropic and elastic. Constitutive relations at layer K €
[1,Ni,y] may be written as ¢ = CxE, where vector of
stresses, ©, vector of strains, E, and block diagonal
constitutive matrix, Cg, are

c = [0-}13 O-A']Tv
E = [E] + ¢E} + f(OEL/ E? + f/(OES T,

Cx = Diag[Ck, C%]. (17)

Details on constitutive matrices Cx and Cy may be
found in standard text books.

Strains, Eq. (11), and stress resultants and stress
couples, Eq. (13), may be collected in two vectors as
e=[E).E).E).E,/ E}/T",

n>

N =[n,m,q,m,q"
(18)

For reasons of simplicity, we have split the shear
forces, the stress resultant couples and the strains into
two parts. The first part is the same as in the first-
order shear-deformation theory, while the second part
arises due to the introduced zig-zag function (3). These
quantities are marked as (0) (stress resultants and
stress couples), and as (o) or (o) (strains).

Using Eq. (18), multilayered relations between stress
resultants and strains may be written as

N = He, (19)
where H is matrix of the following form

Cy C, 0 Fio O

C, 0 F; 0
H= Zy 0 VA (20)
Foo 0
symm. 7,

Coeflicients of H are defined as

Nay chy/2
=3 e
K=1—hk/2

Niay

(Zo, Zn, L) = ) _(Q}, Qi /'(€0)Q%):
K=1

Ny ohg /2
Fi = ZJ C'lf(OVpds, J=0,1,2;
K=1Y—hk/2 @1)
I=0,1.

Matrices Q% and Q) are obtained through the func-
tional (12), relation (15) and by satisfaction of interla-
minar stress continuity conditions (16). Details of the
derivation of these two matrices are given in [7] and
references therein.

3. Special cases

In this Section we briefly consider special cases (sub-
models) of the general model presented in Section 2,
which we denote (following notation introduced by
Carrera [8]) as RMZC (Reissner—Mindlin Zig-zag Con-
tinuous) model.



3.1. Submodel 1

Assumption (B) is not taken into account. Reissner’s
mixed variational principle is not used, and weak form
of equilibrium is satisfied through the principle of vir-
tual work. Transverse shear stresses are obtained with
constitutive equations and are therefore constant
through each layer. Accordingly, formulation from
Section 2 changes in the part where transverse shear
constitutive relations are defined. Layer constitutive
matrices (}< and Q}< from Eq. (21) are now given as

/2
Q= J ez I=0.1, (22)
—hk/2

where 7 are shear correction factors. With respect to
the first-order shear deformation theory the underlined
term in Eq. (2) is added to the formulation. We denote
this model as RMZ model (Reissner—Mindlin Zig-zag).

3.2. Submodel 2

Assumption (A) is relaxed: we drop the underlined
term in Eq. (2), so that the variation of displacement
field through the thickness is linear. Assumption (B) is
completely taken into account. We get a first-order
shear-deformation theory within which independent
transverse shear stress fields are introduced in each
layer in the framework of Reissner’s variational prin-
ciple. The theory does not require any shear correction
factors. Since all the terms associated with zig-zag part
of Eq. (2) are canceled (i.e. quantities marked with
superscripts (8), (o) and (o)), the model has only 5
degress of freedom. Constitutive matrix H has now the
following form,

Co C 0
H= C 0 (23)
symm. Zy

where the submatrices are defined in Eq. (21). We
denote this model as RMC model (Reissner—Mindlin
Continuous).

3.3. Submodel 3

If assumption (A) is relaxed, so that the variation of
displacement field is linear through the thickness, and
assumption (B) is not taken into account, we obtain
standard first-order shear-deformation theory, which
we denote in this work as RM model (Reissner—Mind-
lin). Quantities marked with superscripts (3}, (o) or
(o) are canceled, and transverse shear constitutive
matrix has in this case a familiar form

RMC RM

Fig. 1. Through-thickness distribution of displacement field
and transverse shear fields for different models. Schematic
representation.

hi/2
Q% = J KCiudé. (24)

—hi/2
Assumptions on through thickness distribution of
displacements and transverse shear stresses are illus-

trated on Fig. 1.

4. Remarks on finite element approximation

Finite element approximation is based on a four-
noded multilayered shell element. Geometric and kin-
ematic fields, their variations and derivatives are in-
terpolated in a standard way by bi-linear interpolation
functions N7

4 4
M=) NE. &M, T=) N,
I=1 I=1

4 4
m=) N Om =Y NE O,
I=1

=1

4 4
v= 2 NIE S d= 3 oNE O

I=1

4

4
St=Y N 0t t,= ;N{a@, s

=1
(25)

To avoid shear locking, ANS concept in a form
suggested by Bathe and Dvorkin [1] is used for rep-
resentation of transverse shear components

QEY%2EY) = 11 — EIQE " 2E )

+ A+ EIQEN2EY O,



@ NODAL POINTS
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Fig. 2. Four-noded ANS finite element.

QEY.2E%) = 311 - £'1CE Y 26 P)
- (26)
+ A1+ ENQEYN®2EY ),

where points A, B, C, D are located as shown in Fig. 2.
Since strains at 4, B, C, D points are functions of
nodal displacements and rotations, explicit evaluation
of strains at those points is avoided in the compu-
tational process. In accordance with ANS concept
(which has its background in Hu-Washizu functional),
the variational formulation (12) is modified. Since this
is done as in the first-order shear-deformation formu-
lations, the details will not be addressed here. Having
this in mind and by using relation (15), functional (12)
transforms to the functional with displacements as
only unknowns. It may be formally written as

G(u, ou) = Gip(u, 0u) — Gex(6u) =0, 27
where Gi,(u, du) is related to internal energy and

Gey(Ou) is related to external energy.
From the computational point of view, a robust and

symm.

NN
s
symm
a/2

a2

8

efficient algorithm with high rate of convergence is
required for the solution of non-linear problems. In
this work we use the Newton—Raphson method, which
requires consistent linearization of functional (27). For
linear elastic materials, this results in consistent lineari-
zation of the kinematic relations. It should be noted in
this respect that the second derivative of the shell
director

X d
AGH = < 1o (90), (8)

where (Jt), is a one parameter curve (which depends
on the chosen rotational parameters), is not zero.
Further details on linearization will not be discussed
here; for linearization aspects of large rotation shell
formulations we refer to [4,5]. For the present problem
interpolation and linearization are not commutative,
therefore, consistent linearization is performed after
the interpolation. Solution procedure with quadratic
rate of asymptotic convergence is attained.

5. Linear examples

In this Section we present results of linear analysis
of three-layered, cross ply laminated [90°/0°/90°]
simply supported square plate and shell panel (see
Fig. 3), and make a comparison with the available
exact solutions.

5.1. Example 1: square plate loaded by bi-sinusoidal
transverse pressure

We consider a square plate of length ¢ and thickness
h, loaded by the bi-sinusoidally distributed pressure
G=gsin(nx/a)sin(ny/a). Exact solution for this stan-
dard test was given in [17]. Material properties are E;/
Grr/Er=0.5,

ET:25.0, GTT/ETZO.Z, VLT:O.Q,S,

Fig. 3. Geometry of square plate and shell panel.



Table 1
Square plate: present versus exact solutions; mesh is 16 x 16
elements for one quarter of a plate

alh 2 4 10 100
fis
Exact 5.1964 1.9368 0.7370 0.4347
RMZC 5.4081 1.9625 0.7373 0.4336
RMZ 5.1451 1.9034 0.7284 0.4335
RMs 5.0576 1.7073 0.6615 0.4327
RMp 0.4301 0.4302 0.4302 0.4303
=11
Exact 1.3880 0.7299 0.5590 0.5390
~0.0795
RMZC 0.8742 0.6430 0.5469 0.5365
RMZ 0.8875 0.6394 0.5459 0.5365
RMs 0.3380 0.4041 0.0497 0.5360
RMp - - - 0.5364
612
Exact —0.0863 0.0467 0.0275 0.0214
0.0673
RMZC 0.0711 0.0449 0.0273 0.0213
RMZ 0.0690 0.0442 0.0271 0.0213
RMs 0.0354 0.0307 0.0240 0.0212
RMp - - - 0.0212

where following usual notations, L defines the fiber
direction, 7T the transverse direction, and v, is the
major Poisson’s ratio. The thickness of 0° layers (with
L having direction of x) is /#/4 and the thickness of 90°
layer is /2. For comparison, the non-dimensional dis-
placement and  stresses are introduced  as

1.4 T T T

i =uz100E:h%)(q a®), ", 6 =", ¢")h>/(ga?).
In Table 1 we present i3 at (a/2, a/2), 6'' at the closest
integration point to (a/2, a/2, h/2), and ¢'? at the clo-
sest integration point to (0,0, —//2). The same notation
is used as in Section 3. RMs is first-order shear-defor-
mation formulation with shear correction factor k =5/
6, while RMp denotes results obtained with k= 10°. In
Fig. 4, the distribution of the transverse shear stresses
¢ '3 (at the closest integration point to (0, a/2)) is pre-
sented for ratio a/h = 4. Q4 denotes present results,
3D exact solution, and Q9 solution of nine-noded
RMZC plate element from [8]. RMs results for o'
(obtained from constitutive relations) are: 1.161 for 90°
layer and 0.464 for 0° layer. As expected, present
RMZC model considerably improves predictions of the
first-order  shear-deformation formulation. Other
results related to plate examples may be found in [§].
In general, RMZC results from [8] slightly differ from
those presented here even for the elements of the same
order. This may be due to different meshes used and
due to different approaches adopted to avoid locking.

5.2. Example 2: cylindrical bending of a shell panel

The exact solution for the problem of simply sup-
ported cylindrical panel of infinite length, which is
loaded by sinusoidally distributed pressure, was given
by Ren [18]. Geometry of the panel is described by R/
b = 3/n, where R is radius of the panel, and b is its
arc-length in the circumferential direction. Material
properties are the same as those for example 1. The
panel is loaded by a transverse pressure, sinusoidally

distributed over the top surface §=gsin(na/b), where

/
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Fig. 4. Square plate. Transverse shear stress through the thickness (z = &) at closest integration point to (0,a/2); a/h = 4.



Exact o
Jing & Tzeng -

Fig. 5. Shell panel. Displacement 7, through the thickness (4 = 2.5) at @ = 0 for R/h = 4.

a €0, b]. In Fig. 5, the normalized in-plane displace-
ment h=uEsh>/(q a’) at a = 0 is plotted in the
thickness direction. It can be seen that prediction of
distribution of the in-plane displacement is good
(results are very close to the exact analytical solution).
In Table 2, transverse displacement 3= u310E71°)
(gR* and circumferential stress ¢°>=0>>h>/(¢R>) are
compared with the exact solution at a=5/2. The same
notation is used as in Section 3 and example 1, except
that RM is first-order shear-deformation formulation
with shear correction factor k=1.

Table 2
Shell panel: present versus exact solutions; 40 elements are
used for one half of a panel in circumferential direction

Rih 2 4 10 50 100

H3
Exact 1.436 0.457 0.144 0.0808 0.0787
RMZC 1.5600 0.4656 0.1430 0.0809 0.0787
RMZ 1.4763 0.4492 0.1400 0.0808 0.0787
RMC 1.3175 0.3625 0.1226 0.0800 0.784

RM 1.1988 03359  0.1187  0.0798  0.0784

RMs 1.4175 03852 0.1260  0.0802  0.0785
6°% at —h/2

Exact — —3.462 —1.772 —0.995 —0.798  —0.786

RMZC -2293 —1.440 —0.941 —0.795  —0.785
RMZ - —1.442 —-0939 - —0.785

6. Non-linear examples

6.1. Example 3: cylindrical panel under a point load

Geometry of the panel is defined as: radius is R =
12.73239, length is L = 10, angle in circumferential
direction is ¢ =45° thickness is # = 1. Orientation of
layers is [45°/—45°/45°] and material characteristics are
EL:4O> ET:1> GLT:O.S, GTT:0.2, VLT=0~25- The
two straight edges are simply supported (i.e. uz=0),
while the other two edges are hinged (u3=u;=0),
where u3 is displacement in the thickness direction and
uy 1s the displacement in the circumferential direction.
Point load at the middle of the panel is applied. Mesh
is 10 x 10 elements for the full panel. Force versus dis-
placement under the force diagram is plotted in Fig. 6
for RMC, FSDT (first-order shear-deformation) i.e.
RM, and CLT (classical laminate model) element. The
latter is obtained by using shear correction factor as a
penalty number. Shear correction factor of FSDT el-
ement is k=1. It can be seen that RMC and FSDT
results differ only slightly. The advantage of RMC
over FSDT formulation is that in the former the ‘shear
correction factor’ is taken into account automatically
by the assumed distribution of transverse shear stresses
over the thickness.

6.2. Example 4. snap-through of a cylindrical panel

Geometry data, material characteristics and finite el-
ement mesh of this example are the same as those of
example 4, while the orientation of layers is [0°/0°/0°].
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Fig. 9. Cylindrical panel; [45°/—45°,/0°4]s. Axial force versus axial displacement.

Two straight edges are hinged (u3=u;=0), while the
displacements of curved edges are not restrained. The
results of three models are shown in Fig. 7, where the
diagrams of force versus displacement under the force
are plotted. Again, it can be seen that the RMZC
model predicts very similar global response as FSDT
model.

6.3. Examples: buckling of a cylindrical panel

Snell and Morley [20] performed experimental and
numerical tests on cylindrical panels of the following
geometric data (Fig. 8): length is L = 540 mm, thick-
ness is t = 2.0 mm, arc-length of curved edges is s =
421.2 mm. The panel is clamped at curved edges and
simply supported at straight edges (in the direction of
global coordinates). Loading was imposed by axial dis-

placements at one of the curved edges. The panel is
composed of 16 layers of carbon-epoxy composite
material with the following set-up [45°/—45°/—45°/
45°/0,]s. Material data is: E,=130 kN/m?, E;=10
kN/m?, G;7=6 kKN/m?, v;7=0.3, G;3=G3=G,r To
follow path of equilibrium configurations, modified
arc-length method is used. Results, i.e. axial force
versus axial displacement, are presented in Fig. 9.
It can be observed, that the results for finer meshes
(32 x 32 elements and 32 x 48 elements) are in agree-
ment with the numerical prediction of Snell and
Morley [20]. Better numerical results were obtained by
Jun and Hon [12] and Laschet and Jeusette [13]. The
difference may be due to some differences in the
description of geometry and boundary conditions,
which are not clearly defined in the above mentioned
papers.
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