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Abstract

Independence of observations is often assumed when adjusting geodetic network. Un-
like the distance observations, no dependency of environmental conditions is known for
horizontal direction observations. In order to determine the dependency of horizon-
tal direction observations, we established test geodetic network of a station and four
observation points. Measurements of the highest possible accuracy were carried out us-
ing Leica TS30 total station along with precise prisms GPH1P. Two series of hundred
sets of angles were measured, the first one in bad observation conditions. Using dif-
ferent methods, i.e. variance-covariance matrices, χ2 test and analyses of time series,
the independency of measured directions, reduced directions and horizontal angles were
tested. The results show that the independence of horizontal direction observations is
not obvious and certainly not in poor conditions. In this case, it would be appropri-
ate for geodetic network adjustments to use variance-covariance matrix calculated from
measurements instead of diagonal variance-covariance matrix.

Keywords: statistical independence, directions measurements, variance-covariance
matrices, correlations, tests for randomness.

Introduction

When reckoning or adjusting a geodetic network, the independence of geodetic
measurement (and often also equal accuracies) is assumed. Observed quantities
in terrestric geodetic network are horizontal angles, zenith distances and slope
distances. It is known that observed distances have to be reduced before used in
adjustment, because they are highly dependent on observation conditions [6]. No
such direct dependency is known for observations of horizontal angles or better
horizontal directions. The main objective of this research is to carry out some rep-
resentative geodetic observations of horizontal directions and test their statistical
independence.

Test geodetic network was established on the roof of the building of the Faculty
of Civil and Geodetic Engineering at the University of Ljubljana. The network
consisted of three concrete pillars and two tripods. It was established with a
primary goal to realistically represent networks used in practice. Measurement
equipment of the highest possible accuracy was used. We measured and recorded
two series of hundred sets of angles. The first series was measured in typical bad
observation conditions. The measurements were carried out in the morning when



the enviromental conditions were changing rapidly. Furthermore, the instrument
was not acclimatized. We assume that the observation conditions of the second
series were optimal. The measurements were carried out in the afternoon. The
weather conditions were stable and the instrument was acclimatized. The stability
of reflectors was ensured during the measurements.

The results of measurements were two series of hundred repeated observations
of horizontal directions. Reduced directions were calculated as meant for sets of
angle method [1]. Angles, as difference between successive observed directions,
may also be used in adjustment [1], [4], and were calculated as well.

The data obtained during the observations were statistically tested. The fol-
lowing statistical methods were used: variance-covariance matrices, χ2 test and
time series analysis, where graphical presentation, autocorrelation functions and
tests for randomness were included.

Methods

High accuracy measurements
For high accuracy angle observations in geodetic network, a set of angle method

is usually used. Measuring in both faces eliminates most of the instrumental
errors. However, environmental and random errors remain, but usually we assume
they are not significant.

For our task geodetic network was established on the faculty roof. It consisted
of one station point and four observation points. The position of the points is
shown in Figure 1.

Fig. 1. Reduced directions and angles

Measurements were carried out using Leica TS30 total station and four precise
prisms Leica GPH1P. Two series of hundred sets of angles each were measured
using automatic target recognition (ATR) system. Specified accuracy of ATR
horizontal direction observations is 1 mm or 1′′. At distances greater than 200
m, 1 mm represents less than 1′′.

Technical characteristics of Leica TS30 are shown in Table 1.



Table 1. Tehnical characteristics of Leica TS30

Instrument
Operating range −20 ◦C — +50 ◦C

Resolution of electronic level 2′′

Theodolite
Principle of reading code principle

Standard deviation σISO−T HEO 0.5′′

Accuracy of ATR system σISO−T HEO 1′′ or 1 mm
Electronic distance meter

Reference contitions: n0, p0, t0 1.0002863, 1013.25 hPa, 12 ◦C
Standard deviation σISO−EDM 0.6 mm ; 1 ppm

The mean values of measured directions from both faces were calculated for
each set

Dkij = DkijI + DkijII ± π

2 , (1)

where k = 1, 2 denotes series, i = 1, 2, ..., 100 denotes sets, j = 1, 2, 3, 4 denotes
points T1-T4 and I, II denotes faces. Reduced directions and angles were also
calculated

rDkij = Dkij − Dki1; j = 2, 3, 4, (2)
Aki1 = Dki2 − Dki1 Aki2 = Dki3 − Dki2 Aki3 = Dki4 − Dki3. (3)

Their meaning is presented in Figure 1.

Variance-covariance matrix and correlation matrix
Accuracy estimation of multiple observations is usually represented by variance-

covariance matrix

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ2
1 σ12 σ13 . . . σ1m

σ21 σ2
2 σ23 . . . σ2m

σ31 σ32 σ2
3 . . . σ3m

... ... ... . . . ...
σm1 σm2 σm3 . . . σ2

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where σij are estimated covariances between i-th and j-th observation and σ2
i are

estimated variances of the i-th observation. Nondiagonal elements of variance-
covariance matrix should be close to zero for independent observations. Values in
variance-covariance matrix depend on measurement units. Since we are interested
only in ratios between values, we calculate correlation matrix

ρij = σij

σiσj

. (4)

When the value of correlation coefficient ρij is close to 1 or −1, it means strong
linear dependence between i-th and j-th observation. A form of correlation matrix
is



R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ12 ρ13 . . . ρ1m

ρ21 1 ρ23 . . . ρ2m

ρ31 ρ32 1 . . . ρ3m
... ... ... . . . ...

ρm1 ρm2 ρm3 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In the case of independent observations R is an identity matrix. Reduced
directions and angles are functions of observed directions as shown by equations
(2) and (3). Considering the variance-covariance propagation

Σy = JΣxJT , (5)

where J is the Jacobian, we derive to variance-covariance matrix for reduced
directions and angles.

If the variance-covariance matrix of observed directions was

ΣD =

⎡
⎢⎢⎢⎣

σ2
1 σ12 σ13 σ14

σ12 σ2
2 σ23 σ24

σ13 σ23 σ2
3 σ34

σ14 σ24 σ34 σ2
4

⎤
⎥⎥⎥⎦ , (6)

then for reduced directions it would be

ΣrDtheor
=

⎡
⎢⎣

σ2
1 + σ2

2 − 2σ12 σ2
1 + σ23 − σ13 − σ12 σ2

1 + σ24 − σ14 − σ12
σ2

1 + σ23 − σ12 − σ13 σ2
1 + σ2

3 − 2σ13 σ2
1 + σ34 − σ14 − σ13

σ2
1 + σ24 − σ12 − σ14 σ2

1 + σ34 − σ13 − σ14 σ2
1 + σ2

4 − 2σ14

⎤
⎥⎦
(7)

and for angles it would be

ΣAtheor
=

⎡
⎢⎣

σ2
1 + σ2

2 − 2σ12 σ12 + σ23 − σ13 − σ2
2 σ13 + σ24 − σ14 − σ23

σ12 + σ23 − σ2
2 − σ13 σ2

2 + σ2
3 − 2σ23 σ23 + σ34 − σ24 − σ2

3
σ13 + σ24 − σ23 − σ14 σ23 + σ34 − σ2

3 − σ24 σ2
3 + σ2

4 − 2σ34

⎤
⎥⎦ .

(8)
Assuming the independence of observation, all nondiagonal elements equal zero,

therefore equations simplify to

Σ̃D =

⎡
⎢⎢⎢⎣
σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4

⎤
⎥⎥⎥⎦ , (9)

Σ̃rDtheor
=

⎡
⎢⎣
σ2

1 + σ2
2 σ2

1 σ2
1

σ2
1 σ2

1 + σ2
3 σ2

1
σ2

1 σ2
1 σ2

1 + σ2
4

⎤
⎥⎦ , (10)

Σ̃Atheor
=

⎡
⎢⎣
σ2

1 + σ2
2 −σ2

2 0
−σ2

2 σ2
2 + σ2

3 −σ2
3

0 −σ2
3 σ2

3 + σ2
4

⎤
⎥⎦ . (11)



Test χ2 - Contingency table
For testing statistical independence of direction observations χ2 test is used [5].

Hypotheses are:
H0 : Variables X and Y are independent.
H1 : Variables X and Y are dependent.
We have four observed directions and each of them is observed a hundred times
(n = 100). Observed directions represent random variables. Since χ2 test allows
us to test independence of only two random variables at a time, we are testing
all six possible combinations of two directions, denoted X and Y . Elements
of each variable X and Y are classified by their size into kx = 5 and ky = 5
classes, respectively. Class boundaries were defined uniformly from minimum to
maximum value of observations. The numbers of occurances of random vector
Xt, Yt in i, j-th class are entered in Table 2.

Table 2. Empirical contingency table

X

class 1 2 3 4 5
∑

Y

1 n̂11 n̂12 n̂13 n̂14 n̂15 n̂1Y

2 n̂21 n̂22 n̂23 n̂24 n̂25 n̂2Y

Y 3 n̂31 n̂32 n̂33 n̂34 n̂35 n̂3Y

4 n̂41 n̂42 n̂43 n̂44 n̂45 n̂4Y

5 n̂51 n̂52 n̂53 n̂54 n̂55 n̂5Y∑
X n̂X1 n̂X2 n̂X3 n̂X4 n̂X5 n

On the other hand, theoretical contingency table consists of the number of
random vector Xt, Yt which would lie in i, j-th class if variables X and Y were
independent. Values are gained as a product of number of all vectors Xt, Yt and
probability that Xt, Yt lays in i, j-th class.

nij = nP [X ∈ i ∩ Y ∈ j] (12)
Assuming the independence of variables, the probability P [X ∈ i ∩ Y ∈ j] can

be written as product of P [X ∈ i] and P [Y ∈ j]. Probability of element lying in
certain class is obtained from empirical contingency table as the ratio between
the number of elements lying in certain class n̂Xi or n̂Y j and the number of all
elements n.

nij = n
n̂Xi

n

n̂Y j

n
= n̂Xi · n̂Y j

n
(13)

Test statistic is calculated as a comparison between empirical and theoretical
contingency table.

H =
kx∑

i=1

ky∑
j=1

(nij − n̂ij)2

nij

. (14)

It is distributed by the χ2 distribution with ν = (kx − 1)(ky − 1) degrees of
freedom. Rejection limit for ν = 16 (kx = ky = 5) and the significance level of
5%, equals χ2

0.95,16 = 26.296. When H exceeds this value, we reject null hypothesis
and claim that X and Y are dependent.

All combinations of two observed horizontal directions, reduced directions and
angles are going to be tested this way.



Treating observations as a time series
Measurements carried out in chronological order can be treated as time series.

Graphical presentation with two procedures of smoothing will be done. Auto-
correlation functions will be evaluated and plotted. Two additional tests for
randomness of time series will be run at the end.

Graphical presentation
When analyzing time series, it is recommended to plot the observations. As

the values of observed quantities may be of different magnitude than fluctuations
of these values, the residuals from average are plotted. Random errors in ob-
servations cause fluctuations that hinder us an insight into alteration of values
with time. That is the reason to smooth the series using moving average and
exponential smoothing [3].

Moving average shows chronological order of the average of k consecutive values
[7].

DPi = 1
k

k−1∑
j=0

xi+j (15)

Exponential smoothing uses a different approach. The first element of smoothed
series equals the first observation. The next element is calculated as weighted
average of the last smoothed element and the next observation [7].

EGi = αxi + (1 − α)EGi−1 i = 2, ..., n (16)

The value of α is usually chosen between 0.1 and 0.3, depending on the degree
of smoothing we desire. Exponential smoothing is more suitable for stationary
processes without noticeable trend.

Autocorrelation function
Calculation of autocorrelation function is based on the comparison of one part

of time series with another part of the same series, translated for a time lag k
[2]. The graph of autocorrelation function shows correlation between original and
translated series, on translation k. Firstly, we calculate covariance.

σ(k) = 1
n − k

n−k∑
i=1

(xi − x̄1,...,n−k)(xi+k − x̄k+1,...,n); k = 0, ..., n/2. (17)

Correlation is obtained from

ρ(k) = σ(k)
σ1σ2

, (18)

where
σ2

1 = 1
n − k

n−k∑
i=1

(xi − x̄1,...,n−k)2; k = 0, ..., n/2, (19)

σ2
2 = 1

n − k

n−k∑
i=1

(xi+k − x̄k+1,...,n)2; k = 0, ..., n/2. (20)



The value of autocorrelation function represents the linear time dependence of
the series. In Figure 2, three typical cases are shown. Random series, linear
dependent series and sine dependent series are shown along with their autocor-
relation functions. Functions are plotted for all values of time lag k = 0, ..., n,
although they should and at k = n/2, so the first half is emphasised. If the
observations are expected to be independent, the autocorrelation function graph
immediately decreases from one to about zero and then continues to fluctuate
around zero.

Fig. 2. Autocorrelation function for independent, linear and sine dependent data



Tests for randomness
Three basic tests for randomness were used in our research. The first two tests

are mostly summarized from [3] and the third from [5].

Turning points
For each sequence of three consecutive values (xi, xi+1, xi+2) from time series,

we check whether the middle value represents turning point. From six possible
permutations of three different values, only two cases do not form turning point
(xi > xi+1 > xi+2 or xi < xi+1 < xi+2). The other four permutations represent
turning point, unless two successive values are equal. The number of turning
points p in series of n observation is random variable with the following expected
value and variance

E[p] = 2
3(n − 2), (21)

var[p] = 8n

45 . (22)

For large samples, p is distributed approximately normally, therefore a test statis-
tic can be formed as follows:

T =
p − 2

3(n − 2)√
8n
45

. (23)

Hypotheses are:
H0: Time series is random.
H1: Time series is not random.
Rejection limits for the significance level of 5% equals −1.96 and 1.96. If test
statistic T is within these borders, we can not claim that the series is not random.

Difference sign
For random series in half cases the graph between two observations should fall

and in half cases it should rise. Random variable is the number of consecutive
pairs from series, where the graph falls (xi > xi+1). This variable has the following
expected value and variance

E[c] = n − 1
2 , (24)

var[c] = n + 1
12 . (25)

By increasing the sample, the distribution of c quickly converges to normal. For
the same hypothesis as before, we form test statistic

U =
c − n−1

2√
n+1
12

. (26)

Again critical boundaries are −1.96 and 1.96 and if the statistic U lies between
them we can not say that the series is not random. Otherwise we claim that it is
not.



Runs test
For Runs test we have to construct a binary sequences out of observed series. If

the observed value exceeds the mean value of series, the value of binary sequence
becomes 1; if not, the value of binary sequence becomes 0. For test statistic
we need to count the number of zeros n1 and ones n2 in the sequence and the
number of “runs” r, i.e. the number of “occurances of an equal value subsequence
delimited by a different value” [5]. Hypotheses are the same as above. The
expected value and variance of variable r are

E[r] = 2n1n2

n1 + n2
+ 1, (27)

var[r] = 2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1+n2 − 1) . (28)

In the case of large samples, r is distributed approximately normally. We form
the test statistic

V =
r − 2n1n2

n1+n2√
2n1n2(2n1n2−n1−n2)
(n1+n2)2(n1+n2−1)

. (29)

Critical boundaries are −1.96 and 1.96 and if the statistic V lies between them,
we can not say that the series is not random.

Results

Measurements
Measurements were carried out on 25th Februar 2011.The first series of a hun-

dred sets of angles started at 8:00 and ended at 9:35 in the morning. The second
series lasted from 13:40 to 15:15 in the afternoon. The first series was intentionally
carried out in poor observation conditions. The instrument was not acclimatized
and atmospheric conditions were not stable due to sunrise and warming of the
air. Afternoon conditions were stable, the weather was clear, it was cold and
windy. Each series took about an hour and half, which means approximately one
set per minute. Observations were carried out automatically using ATR system.
98 sets were extracted from the first series and 99 from the second. Three sets
were incomplete due to some unexplained errors. Reduced directions and angles
were calculated using equations (2) and (3).

We have two series of 98 and 99 observations of four directions. Additionally,
we calculated three reduced directions and three angles for each of these sets in
both series.

Variance-covariance matrix and correlation matrix
Tables 3 and 4 show variance-covariance and correlation matrices for observed

directions, reduced directions and angles and for both series. The units of the
variance-covariance matrices are cc (= 1/10000 gon).

Comparing the obtained variance-covariance matrices with assumptions for in-
dependent observations (equations (9), (10) and (11)), we note that they are not
adequate. Correlation matrix for observed directions shows a strong dependence



Table 3. Variance-covariance and correlation matrices for the first series

variance-covariance matrices correlation matrices

ΣD1 =

⎡
⎣0.00569 0.00494 0.00498 0.00439

0.00494 0.00504 0.00459 0.00430
0.00498 0.00459 0.00789 0.00424
0.00439 0.00430 0.00424 0.00536

⎤
⎦ RD1 =

⎡
⎣1.000 0.922 0.743 0.795

0.922 1.000 0.727 0.826
0.743 0.727 1.000 0.651
0.795 0.826 0.651 1.000

⎤
⎦

ΣrD1 =

[
0.00085 0.00035 0.00066
0.00035 0.00361 0.00055
0.00066 0.00055 0.00226

]
RrD1 =

[
1.000 0.202 0.472
0.202 1.000 0.193
0.472 0.193 1.000

]

ΣA1 =

[
0.00085 −0.00050 0.00030

−0.00050 0.00375 −0.00336
0.00030 −0.00336 0.00477

]
RA1 =

[
1.000 −0.278 0.149

−0.278 1.000 −0.794
0.149 −0.794 1.000

]

of all four directions. According to these results we conclude that the measure-
ments from the first series are highly dependent.

For the second series we can note that the obtained variance-covariance matri-
ces coincide with the assumptions better. At matrix ΣA2 covariances between
adjacent angles are evidently higher. The correlations for observed directions in
the second series are obviously smaller than in the first one. We may conclude
that the correlation depends on the observation conditions.

Table 4. Variance-covariance and correlation matrices for the second series

variance-covariance matrices correlation matrices

ΣD2 =

⎡
⎣ 0.00030 −0.00012 0.00025 0.00012

−0.00012 0.00047 −0.00013 −0.00004
0.00025 −0.00013 0.00105 0.00021
0.00012 −0.00004 0.00021 0.00227

⎤
⎦ RD2 =

⎡
⎣ 1.000 −0.324 0.436 0.150

−0.324 1.000 −0.186 −0.035
0.435 −0.186 1.000 0.135
0.140 −0.035 0.135 1.000

⎤
⎦

ΣrD2 =

[
0.00102 0.00005 0.00027
0.00005 0.00087 0.00014
0.00027 0.00014 0.00232

]
RrD2 =

[
1.000 0.053 0.173
0.053 1.000 0.100
0.173 0.100 1.000

]

ΣA2 =

[
0.00102 −0.00097 0.00022

−0.00097 0.00179 −0.00094
0.00022 −0.00094 0.00290

]
RA2 =

[
1.000 −0.719 0.126

−0.719 1.000 −0.412
0.126 −0.412 1.000

]

Test χ2

All possible combinations of two observed directions, two reduced directions and
two angles will be tested for both series. Null hypothesis says that the treated
quantities are independent. Critical limit for the significance level of 5% equals
χ2

0.95,16 = 26.296. If test statistic is greater than limit, we claim that the tested
quantities are dependent. Results are shown in Tables 5, 6 and 7.

As observed in previous section, the observations are far more dependent in
the first series. The first two pairs of directions from the second series are also
dependent, but their test statistic is not very high. An interesting fact is that
reduced directions in second series do not show dependence even though they



Table 5. Test χ2 — values of testing statistic H for observed directions

1st series 2nd series
dependence dependence

pair significant not significant significant not significant
D1-D2 159.207 40.212
D1-D3 79.679 35.538
D1-D4 118.651 10.339
D2-D3 88.822 19.275
D2-D4 125.284 15.362
D3-D4 80.293 13.371

Table 6. Test χ2 — values of testing statistic H for reduced directions

1st series 2nd series
dependence dependence

pair significant not significant significant not significant
rD1-rD2 10.291 16.988
rD1-rD3 32.743 10.293
rD2-rD3 12.705 12.953

Table 7. Test χ2 — values of testing statistic H for angles

1st series 2nd series
dependence dependence

pair significant not significant significant not significant
A1-A2 15.460 89.591
A1-A3 31.503 5.126
A2-A3 96.058 32.052

should. The reason is small variance of the first observation which represents the
covariance between all three of reduced directions (see equation (10)). For the
angles, the results of the second series completely coincide with the assumptions
for independendent observations.

Treating observations as a time series
Graphical presentation

Residuals of the observations, from their average, are plotted in Figure 3 for the
first and in Figure 4 for the second series. Graphs of raw residuals for both series
show random fluctuations of measurements. Besides raw residuals we added the
results of moving average and exponential smoothing, to present the trends of
observations more clearly.

In the first series it is quite obvious that all measured values are decreasing in the
first third of observations. Direction D3 is oscillating from the 20th observation



Fig. 3. Residuals from average, moving average and exponential smoothing in the first
series

Fig. 4. Residuals from average, moving average and exponential smoothing in the second
series



on, while for the other three directions we could say that they are rising again
from the 60th observation on. These changes of values are not negligible.

Residuals of the second series are fluctuating due to random errors, but on the
smoothed graph no significant trends can be noticed. Only the values of direction
D4 decrease drastically in the first 15 measurements. Values of D2 are decreasing
gently in the last 40 sets of angles. The oscillation of D3 can be noticed, too.

Trends or oscillations observed in these plots do not necessary mean dependence
of observations. However, they show that our measurements are not strictly
random.

Autocorrelation function
Autocorrelation functions are plotted for 60 translations. In Figure 5 we can

see autocorrelation functions for all four observed directions and both series. The
functions of morning observations are typical for dependent variables. None of
the observations steady about zero; directions D1 and D2 do not even decrease
in the beginning. The autocorelation functions indicates that variables D1 and
D2 are linear dependent. Autocorrelation functions of the other two directions
decreases, but only to a half. In the second series, all four functions decrease in
the first step and eventually they stay around zero.

Fig. 5. Autocorrelation functions for both series



Tests for randomness
In this section the results of tests for randomness of time series are presented.

The critical limits for all three tests are (−1.96, 1.96) and when the test statistic
lies outside this interval, we conclude that series is statistically significant not
random. In Tables 8, 9 and 10, the results of tests are shown along with the
values of test statistics.

Table 8. Turning points test — results

1st series 2nd series
non-randomness non-randomness

T significant not significant significant not significant
D1 −4.03 −2.19
D2 −1.18 −2.47
D3 −0.33 0.00
D4 0.73 0.24

Table 9. Difference sign test — results

1st series 2nd series
non-randomness non-randomness

U significant not significant significant not significant
D1 −1.11 0.54
D2 −2.00 −0.57
D3 −0.53 −1.57
D4 −1.22 −1.22

Table 10. Runs test — results

1st series 2nd series
non-randomness non-randomness

V significant not significant significant not significant
D1 −9.26 −6.56
D2 −6.46 −7.82
D3 −1.95 −3.71
D4 −2.86 −0.80

We can notice that Runs test is the strictest of all three tests. Only two observed
directions not significantly non-random are presented as such also by the first two
tests. None of the observations indicated significant non-randomness in all three
tests.



Discussion

The test measurements carried out in the test network are comparable to the
control measurements of the highest accuracy except in two aspects. Firstly,
the test network is of smaller dimensions than common geodetic networks and
secondly, the measurements of the first series were carried out in unacceptable
observation conditions. However, we estimate that the second series of measure-
ments are quite representative sample of high accuracy geodetic observations.

Before dealing with variance-covariance matrices of observations, we derived
theoretical variance-covariance matrices of reduced directions and angles. The
reduced directions and angles are not independent. The calculated values of
variance-covariance matrices and corelation matrices expressed rather strong de-
pendence of observations in the first series. The second series observations were
less dependent except for the first observed direction D1. The correlation of re-
duced directions was not obvious, for the variance of D1 was small by chance.
Successive pairs of angles were highly correlated as expected.

The results of χ2 test are consistent with the described correlations.
Plots of observations show strong trend in the first third of the first series, which

is attributed to acclimatization of the instrument. The magnitude of difference
in values in the second series is a few times smaller than in the first. There are
some fluctuations in the second series observations, but they can probably be
attributed to random errors. According to autocorrelation functions, we could
say that directions D3 and D4 are more independent than D1 and D2, besides the
fact that first series is more correlated in general. One of the tests for randomness
of time series detected non-randomness in observations.

Based on this research we conclude that the acclimatization of instrument and
the choise of favorable observation conditions is essential for the independence of
observed directions, which is one of the basic assumptions in geodetic network
adjustments.
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