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Abstract

We present a strain-based finite-element formulation for the dynamic analysis of flexible

elastic planar multibody systems, composed of planar beams. We consider finite displace-

ments, rotations and strains. The discrete dynamic equations of motion are obtained by

the collocation method. The strains are the basic interpolated variables, which makes the

formulation different from other formulations. The further speciality of the formulation is

the strong satisfaction of the cross-sectional constitutive conditions at collocation points.

In order to avoid the nested integrations, a special algorithm for the numerical integration

over the length of the finite element is proposed. The midpoint scheme is used for the

time integration. The performance of the formulation is illustrated via numerical examples,

including a stiff multibody system.
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1 Introduction

Beam is one of the basic components of the multibody mechanisms and engineer-

ing structures. For various reasons beams are often highly flexible, which requires

the geometrically non-linear dynamic theory to be considered in the analysis. A

number of geometrically non-linear dynamic finite-element formulations have been

proposed (see, e.g. [1–16]), which seem to be sufficiently accurate and efficient for

practical purposes. These finite-element formulations employ displacements and

rotations [3,4,7,8,11,14–16] or absolute nodal coordinates [5,6,10,12,13] as the ba-

sic interpolated variables.

The present formulation, though, employs strains. The strain-based finite elements

seem to be a promising alternative. They have recently been applied in the geo-

metrically and materially non-linear static analysis of planar and spatial reinforced

concrete structures [17–19] and in the analysis of slip in composite beams [20,21];

there, they have proved to be accurate and robust, exhibiting no locking and demon-

strating ability to consider the strain localization in a natural way. The first attempt

to apply strain-based elements to dynamics was made by Gams et al. [22]. Their

formulation was limited to the constant interpolation of strains. When compared

to the displacement-based formulation, the strain-based one is more complex with

regard to both theory and computer implementation.

In this paper we present a new, improved family of strain-based finite elements,

which represents a substantial generalization of the results presented in [22]. The

improvements are made regarding (i) the order of interpolation of strains, which

is now arbitrary, (ii) the discretization method, which is here the collocation in

contrast to the Galerkin method used in [22], and (iii) the implementation, which
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now fully avoids the nested numerical integrations.

2 Kinematic equations

We consider an initially straight planar elastic beam element of initial length L in

the (X,Z)-plane of a spatial Cartesian coordinate system (X, Y, Z). We assume

that the centroid axis of the beam is parallel to theX-axis in the undeformed state.

The shape of the cross-section is assumed constant and symmetric with respect to

the plane of deformation. The position of a cross-section relative to the beam axis is

identified by the material coordinate x ∈ [0, L]. Reissner’s beam theory [23] is em-

ployed. It assumes the Bernoulli hypothesis of planar and undistorted cross-sections

and considers finite displacements, rotations, and (membrane, shear and bending)

strains. Along its centroid axis the beam is subjected to time dependent distributed

loads pX(x, t), pZ(x, t) and moment mY (x, t) (measured per unit length of unde-

formed axis; t denotes time), and generalized point loads Sk(t) (k = 1, 2, . . . , 6) at

its ends x = 0 and x = L. Loads are assumed to be deformation-independent. For

further details the reader may consult, e.g. [23,24].

The components of the displacement vector, u, of an arbitrary point, x, on the

centroid axis in theX- and Z-directions are denoted by u(x, t) and w(x, t), respec-

tively. The relations between the displacement components and the strains were

derived by Reissner [23] and read

1+ u′ − (1 + ε) cosϕ− γ sinϕ = 0, (1)

w′ + (1 + ε) sinϕ− γ cosϕ = 0, (2)

ϕ′ − κ = 0. (3)

In Eqs. (1)–(3) the prime (′) denotes the derivative with respect to x, whereas func-
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tions ε(x, t), γ(x, t) and κ(x, t) denote the extensional strain, the shear strain (the

rotation of the cross-section relative to the normal to the deformed axis at x) and the

bending strain (the pseudocurvature [26]) of the centroid axis, respectively, while

ϕ(x, t) is the rotation of the cross-section at x.

3 Equations of motion

The equations of motion of the beam will be derived from Hamilton’s principle

[25], which says that the following variation is zero

δ
∫ t2

t1
(Ep −Ek) dt = 0 (4)

for any kinematically admissible variations of displacements, provided that the

variations of displacements vanish at t1 and t2. In Eq. (4) and throughout the text, δ

denotes the variation. Ep and Ek are potential and kinetic energies, respectively. t1

is the lower and t2 the upper boundary of the time interval over which the dynamic

equilibrium is satisfied. The kinetic energy of the beam is given by the expression

Ek =
1

2

∫ L

0
ρA u̇2 dx+

1

2

∫ L

0
ρA ẇ2 dx+

1

2

∫ L

0
ρIy ϕ̇

2 dx, (5)

where ρ denotes density of material, A is the area and Iy the centroidal moment of

inertia of the cross-section about its y-axis. The superposed dot denotes the time

derivative. The potential energy of the elastic beam is

Ep =
1

2

∫ L

0
EAε2 dx+

1

2

∫ L

0
GAs γ

2 dx+
1

2

∫ L

0
EIy κ

2 dx−
∫ L

0
pX u dx−

∫ L

0
pZ w dx−

∫ L

0
mY ϕdx−

6∑
i=1

Si Ui.
(6)

E is Young’s modulus and G shear modulus of material; As is the shear area of the

cross-section. Ui (i = 1, 2, . . . , 6) are the generalized boundary displacements at
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x = 0 and x = L; they are energy complements to the generalized boundary forces

Si (for further details see [24,27–29]).

Eqs. (1)–(3) represent three constraining conditions for six functions u(x, t),w(x, t),

ϕ(x, t), ε(x, t), γ(x, t) and κ(x, t). Following the methodology inspired by the La-

grangian multipliers method in constrained problems of calculus of variation, three

independent Lagrangian multipliers RX , RZ and M are introduced, by which the

constraints (1)–(3) are multiplied and then integrated over the length of the beam.

Adding the resulting equations to the functional in Eq. (4) yields the augmented

Hamilton principle

δ
∫ t2

t1

(
Ep −Ek +

∫ L

0
RX

(
1 + u′ − (1 + ε) cosϕ− γ sinϕ

)
dx+

∫ L

0
RZ

(
w′ + (1 + ε) sinϕ− γ cosϕ

)
dx+∫ L

0
M
(
ϕ′ − κ

)
dx
)

dt = 0.

(7)

Eq. (7) requires the variation of a number of terms. Only the variation of the kinetic

energy is worked out here [27]:

δ
∫ t2

t1
Ek dt =

∫ t2

t1

( ∫ L

0
ρAu̇δu̇ dx +

∫ L

0
ρAẇδẇ dx +

∫ L

0
ρIyϕ̇δϕ̇ dx

)
dt

=
∫ L

0

(
ρAu̇δu + ρAẇδw + ρIyϕ̇δϕ

)∣∣∣t2
t1

dx−∫ t2

t1

( ∫ L

0
ρAüδu dx +

∫ L

0
ρAẅδw dx +

∫ L

0
ρIyϕ̈δϕ dx

)
dt.

As the first variations δu, δw and δϕ must vanish at t1 and t2, we have

δ
∫ t2

t1
Ek dt = −

∫ t2

t1

( ∫ L

0
ρA ü δu dx+

∫ L

0
ρA ẅ δw dx+

∫ L

0
ρIy ϕ̈ δϕdx

)
dt.

(8)

After Eq. (7) has been varied, and the terms RXδu
′, RZδw

′ and Mδϕ′ integrated
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by parts and rearranged, we obtain

∫ L

0
(EAε−N ) δε dx+

∫ L

0
(GAsγ −Q) δγ dx+

∫ L

0
(EIyκ−M) δκ dx+∫ L

0
(R′

X + pX − ρAü) δu dx+
∫ L

0
(R′

Z + pZ − ρAẅ) δw dx+∫ L

0

(
M′ − (1 + ε)Q + γN +mY − ρIyϕ̈

)
δϕdx+∫ L

0

(
1 + u′ − (1 + ε) cosϕ− γ sinϕ

)
δRX dx+∫ L

0

(
w′ + (1 + ε) sinϕ− γ cosϕ

)
δRZ dx+

∫ L

0
(ϕ′ − κ) δM dx−

(
S1 + RX(0)

)
δU1 −

(
S2 + RZ(0)

)
δU2 −

(
S3 + M(0)

)
δU3 −(

S4 −RX(L)
)
δU4 −

(
S5 −RZ(L)

)
δU5 −

(
S6 −M(L)

)
δU6 = 0.

(9)

In Eq. (9) variations δε, δγ, δκ, δu, δw, δϕ, δRX , δRZ and δM are independent

arbitrary functions of x, and variations δU1, δU2, δU3, δU4, δU5 and δU6 are inde-

pendent arbitrary parameters, provided that the variation is zero if the correspond-

ing nodal displacement Ui is prescribed. According to the fundamental lemma of

calculus of variation, the coefficients of the independent variations should vanish

identically for Eq. (9) to be satisfied for arbitrary variations. The following equa-

tions of motion of the beam are obtained for any t ≥ 0:

Constitutive equations, x ∈ [0, L]:

EAε−N = 0, (10)

GAsγ −Q = 0, (11)

EIyκ−M = 0; (12)

Kinematic equations, x ∈ (0, L):

1+ u′ − (1 + ε) cosϕ− γ sinϕ = 0, (13)

w′ + (1 + ε) sinϕ− γ cosϕ = 0, (14)

ϕ′ − κ = 0; (15)
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Equations of motion, x ∈ (0, L):

R′
X + pX − ρAü = 0, (16)

R′
Z + pZ − ρAẅ = 0, (17)

M′ − (1 + ε)Q + γN +mY − ρIy ϕ̈ = 0. (18)

The natural and essential boundary conditions corresponding to Eqs. (10)–(18) are

x = 0 : S1 + RX(0) = 0 or u(0) = U1, (19)

S2 + RZ(0) = 0 or w(0) = U2, (20)

S3 + M(0) = 0 or ϕ(0) = U3; (21)

x = L : S4 −RX(L) = 0 or u(L) = U4, (22)

S5 −RZ(L) = 0 or w(L) = U5, (23)

S6 −M(L) = 0 or ϕ(L) = U6. (24)

Eqs. (10)–(18) constitute the system of nine equations for nine unknown functions

ε(x, t), γ(x, t), κ(x, t), u(x, t), w(x, t), ϕ(x, t), RX(x, t), RZ(x, t) and M(x, t)

along with the natural and essential boundary conditions (19)–(24).

From Eqs. (16)–18) it is clear that the Lagrangian multipliers RX and RZ represent

axial and shear forces with respect to the spatial coordinate system

N = RX cosϕ−RZ sinϕ, (25)

Q = RX sinϕ+ RZ cosϕ, (26)

while M is the bending moment. In order to minimize the number of unknown

functions in our final discretized system of equations, some of these equations are

integrated separately. The integration of kinematic Eqs. (13)–(15) with respect to x

gives the displacements and the rotation at x in terms of the deformation variables,
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ε, γ and κ:

u(x, t) = u(0, t) +
∫ x

0

(
(1 + ε) cosϕ+ γ sinϕ

)
dξ − x, (27)

w(x, t) = w(0, t) −
∫ x

0

(
(1 + ε) sinϕ− γ cosϕ

)
dξ, (28)

ϕ(x, t) = ϕ(0, t) +
∫ x

0
κdξ. (29)

While u(0, t) = U1(t), w(0, t) = U2(t), ϕ(0, t) = U3(t) can automatically meet

any given essential boundary conditions at x = 0, parameters u(L, t), w(L, t),

ϕ(L, t) do not automatically satisfy the conditions at x = L, unless strains ε, γ and

κ are chosen exactly as needed. Consequently, one must explicitly require that ε, γ

and κ be such that for any time t

u(L, t) = u(0, t) +
∫ L

0

(
(1 + ε) cosϕ+ γ sinϕ

)
dx− L = U4(t), (30)

w(L, t) = w(0, t) −
∫ L

0

(
(1 + ε) sinϕ− γ cosϕ

)
dx = U5(t), (31)

ϕ(L, t) = ϕ(0, t) +
∫ L

0
κ dx = U6(t). (32)

The relations between the Lagrangian multipliers RX , RZ and M and the strains

ε, γ and κ are obtained by the integration of Eqs. (16)–(18):

RX(x, t) = RX(0, t) −
∫ x

0
(pX − ρA ü) dξ, (33)

RZ(x, t) = RZ(0, t) −
∫ x

0
(pZ − ρAẅ) dξ, (34)

M(x, t) = M(0, t) +
∫ x

0

(
(1 + ε)Q− γN −mY + ρIy ϕ̈

)
dξ. (35)

It is clear that RX(L, t), RZ(L, t) and M(L, t) depend on strains. If they are to

meet the prescribed natural boundary conditions at x = L, the following equations

must be satisfied:

RX(L, t) = RX(0, t) −
∫ L

0
(pX − ρA ü) dx = S4(t), (36)

RZ(L, t) = RZ(0, t) −
∫ L

0
(pZ − ρAẅ) dx = S5(t), (37)
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M(L, t) = M(0, t) +
∫ L

0

(
(1 + ε)Q− γN −mY + ρIy ϕ̈

)
dx = S6(t). (38)

Next we claim that Eqs. (27)–(29) and (33)–(35) are satisfied. Consequently, also

Eqs. (13)–(15) and (16)–(18) are satisfied. Thus, RX(L, t), RZ(L, t) and M(L, t)

can be expressed by RX(0, t), RZ(0, t), M(0, t) and strains using Eqs. (36)–(38).

The remaining set of the equations of the beam, Eqs. (10)–(12), the boundary condi-

tions (19)–(24) and the constraints (30)–(32) then constitute the set of twelve equa-

tions for twelve unknowns, i.e. three constitutive equations, six boundary condi-

tions and three kinematic constraints for the determination of three unknown func-

tions of x and t, i.e. ε(x, t), γ(x, t) and κ(x, t) and nine time dependent parameters(
u(0, t), w(0, t), ϕ(0, t), u(L, t), w(L, t), ϕ(L, t), RX(0, t), RZ(0, t), M(0, t)

)
.

These equations are supplemented by an appropriate set of initial conditions at

t = 0.

4 Finite-element formulation

The Lagrangian polynomials, Pi(x) (i = 1, 2, . . . , N), of degree N − 1 are em-

ployed for the spatial approximation of the unknown functions ε(x, t), γ(x, t) and

κ(x, t) and their variations. Interpolation points are assumed to be distributed reg-

ularly over the beam length, xi = (i− 1) L
N−1

(i = 1, 2, . . . , N):

ε(x, t) =
N∑

i=1

Pi(x) εi(t) → δε(x) =
N∑

i=1

Pi(x) δεi(t) , (39)

γ(x, t) =
N∑

i=1

Pi(x) γi(t) → δγ(x) =
N∑

i=1

Pi(x) δγi(t), (40)

κ(x, t) =
N∑

i=1

Pi(x) κi(t) → δκ(x) =
N∑

i=1

Pi(x) δκi(t). (41)

Once the nodal values εi, γi and κi at a given time tn are known, the remaining

quantities can easily be determined. Since the terms to be encountered involve in-
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tegrals, which cannot be analytically integrated for higher-order polynomials, one

is forced to use the numerical integration. For higher-order interpolations this rep-

resents a computationally demanding task, because the nested integrals of depth up

to five have to be evaluated in some terms of the tangent stiffness matrix, which

renders the calculations slow and computer memory demanding. Let us give an

example. Assume that we need the value of the multiplier RX at a given point x.

After inserting u(x, t) from Eq. (27) into Eq. (33), we have

RX(x, t) =RX(0, t) −
∫ x

0
(pX − ρA ü) dξ

=RX(0, t) −
∫ x

0
(pX − ρA ü(0, t)) dξ

+
∫ x

0
ρA

∫ ξ

0

d2

dt2

(
(1 + ε) cosϕ+ γ sinϕ

)
dη dξ. (42)

The Gaussian integration of the double integral in Eq. (42) requires a nested al-

gorithm: for each Gaussian point of the external numerical integration, a complete

evaluation of the internal integral up to the Gaussian point is required. Hence the

number of the numerical operations increases withN 2 +N compared toN needed

in a single integral. RX is needed both in the residual vector and the stiffness ma-

trix integrations; this requires the third numerical integration in a row. Hence, these

nested integrations become computationally very demanding. An alternative is pro-

posed here, which elegantly avoids these inconveniences.

The key idea of a numerical integration is to choose a set of K independent func-

tions Pi(ξ) to approximate the integrand, f(ξ), ξ ∈ [−1, 1], in the form of a linear

combination

f(ξ) =
K∑

i=1

f(ξi)Pi(ξ) (43)

with ξi being the abscissae of the points of interpolation. After the approximation

(43) is inserted into the integral and the integration performed over the domain
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[−1, 1], we have ∫ 1

−1
f(ξ) dξ =

K∑
i=1

wif(ξi) (44)

with wi =
∫ 1
−1 Pi(ξ) dξ denoting the weights of the integration.

The same idea is followed in the present paper. In order to integrate numerically the

integrals involved in our formulation, we first have to interpolate their integrands.

The implementation is, however, done in a specific way, as explained in the sequel.

For example, to obtain the displacements by the integration of Eqs. (27)–(28), we

interpolate the spatial derivatives of displacements u′(x, t), w′(x, t) in the following

way:

u′(x, t) =
N∑

i=1

Pi(x) ai(t), (45)

w′(x, t) =
N∑

i=1

Pi(x) bi(t), (46)

with ai and bi (i = 1, 2, . . . , N) being expressed by the nodal variables (εi, γi, κi)

through kinematic Eqs. (1) and (2):

ai = (1 + εi) cosϕi + γi sinϕi − 1, (47)

bi = −(1 + εi) sinϕi + γi cosϕi. (48)

Pi(ξ) are taken to be the Lagrangian polynomials (i = 1, 2, 3, . . . , N). Integrating

Eqs. (45) and (46) with respect to x gives displacements u(x, t) and w(x, t)

u(x, t) = u(0, t) +
N∑

i=1

IPi(x) ai(t), (49)

w(x, t) = w(0, t) +
N∑

i=1

IPi(x) bi(t). (50)

Here IPi(x) =
x∫
0
Pi(ξ) dξ is the analytical integral of the Lagrangian polynomial

Pi(x). Rotation ϕ(x, t) is obtained by the direct integration of Eq. (3) in combina-
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tion with Eq. (41):

ϕ(x, t) = ϕ(0, t) +
∫ x

0
κ(ξ, t) dξ = ϕ(0, t) +

N∑
i=1

IPi(x) κi(t). (51)

The idea of interpolating derivatives rather than directly numerically integrating the

integrand is also followed for M. Hence

M′(x, t) =
N∑

i=1

Pi(x) ci(t) (52)

with ci (i = 1, 2, . . . , N) following from Eq. (18):

ci = (1 + εi)Qi − γi Ni −mY i + ρIy ϕ̈i . (53)

Integrating Eq. (52) with respect to x gives M(x, t)

M(x, t) = M(0, t) +
N∑

i=1

IPi(x) ci(t). (54)

The need for the integration other than that of the Lagrangian polynomials is then

completely eliminated. This integration can be performed analytically and only

once, which renders the integration computationally very effective.

The interpolations introduced in Eqs. (45)–(46) and (52) should be regarded as a

part of the numerical integration method, and not as the interpolation in the sense

of the finite element method.

The second time derivatives of u, w, ϕ are obtained by the differentiation of Eqs.

(49)–(51)

ü(x, t) = ü(0, t) +
N∑

i=1

IPi(x) äi(t), (55)

ẅ(x, t) = ẅ(0, t) +
N∑

i=1

IPi(x) b̈i(t), (56)

ϕ̈(x, t) = ϕ̈(0, t) +
N∑

i=1

IPi(x) κ̈i(t). (57)
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Their spatial integrals are needed in Eqs. (33)–(35) for calculating RX(x, t), RZ(x, t)

and M(x, t) and are dealt with in the following way:

x∫
0

ü(ξ, t) dξ = ü(0, t) x+
N∑

i=1

IIPi(x) äi(t), (58)

x∫
0

ẅ(ξ, t) dξ = ẅ(0, t) x+
N∑

i=1

IIPi(x) b̈i(t), (59)

x∫
0

ϕ̈(ξ, t) dξ = ϕ̈(0, t) x+
N∑

i=1

IIPi(x) κ̈i(t), (60)

where IIPi(x) =
x∫
0

ξ∫
0
Pi(η) dη dξ. The time derivatives äi and b̈i are obtained in terms

of εi, γi and κi and their time derivatives obtained by the differentiation of Eqs.

(47)–(48).

Our finite-element formulation is based on the collocation-type of the spatial dis-

cretization [19,26] rather than on the standard Galerkin-type. We assume that the

collocation and the interpolation points coincide, so that the points are regularly

distributed over the beam length, xi = (i − 1) L
N−1

. Eqs. (10)–(12), (19)–(24) and

(30)–(32) yield the following system of semi-discrete equations of motion of the

beam finite element:

gi = EAεi(t) −Ni(t) = 0, i = 1, . . . , N (61)

gN+i = GAsγi(t) −Qi(t) = 0, i = 1, . . . , N (62)

g2N+i = EIyκi(t) −Mi(t) = 0, i = 1, . . . , N (63)

g3N+1 = u(L, t) − uN(t) = 0, (64)

g3N+2 = w(L, t) − wN(t) = 0, (65)

g3N+3 = ϕ(L, t) − ϕN (t) = 0, (66)

g3N+4 = S1(t) + RX(0, t) = 0, (67)

g3N+5 = S2(t) + RZ(0, t) = 0, (68)
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g3N+6 = S3(t) + M(0, t) = 0, (69)

g3N+7 = S4(t) −RXN (t) = 0, (70)

g3N+8 = S5(t) −RZN(t) = 0, (71)

g3N+9 = S6(t) −MN(t) = 0. (72)

uN , wN , ϕN ,RXN ,RZN and MN denote the values of the variables at the end point

i = N . Eqs. (61)–(72) constitute a system of 3N + 9 algebraic–differential equa-

tions for 3N + 9 unknown functions of time: εi(t), γi(t), κi(t) (i = 1, 2, . . . , N),

u(0, t), w(0, t), ϕ(0, t), u(L, t), w(L, t), ϕ(L, t), RX(0, t), RZ(0, t) and M(0, t).

Eqs. (64)–(69) are algebraic, and Eqs. (61)–(63) and (70)–(72) are differential equa-

tions in time of the second order. Observe that this system has an implicit form

F(u, u̇, ü, t) = 0 and thus does not comply with the standard form M ü +

P (u) = F used, e.g. in [14]. The constitutive equations (61)–(63) represent the so

called consistency conditions [26,28] imposing the equality of the cross-sectional

constitutive and equilibrium forces. The satisfaction of the consistency conditions

in a point-wise manner can increase the accuracy of internal forces in materially

non-linear problems. Observe that the consistency conditions are not strongly sat-

isfied in displacement-based formulations.

The internal degrees of freedom, i.e. RX(0, t), RZ(0, t), M(0, t), and the internal

nodal strains, εj(t), γj(t), κj(t) (j = 1, 2, . . . , N), are eliminated prior to assem-

bling the equations of motion of the structure. This leaves us only with boundary

displacements and rotations of each element, and a fairly small tangent stiffness

matrix of the entire structure. Introducing any kind of joints in such a formulation

presents no extra complexity, as the desired degrees of freedom are condensed out

in the same way as the internal nodal strains or forces.

In the present formulation, only the Lagrangian polynomials of a given degree
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need to be integrated, and this integration can be prepared in advance. Thus, the

order of the numerical integration becomes irrelevant. This differs from standard

displacement-based formulations, where the order of the numerical integration (full,

reduced or selectively reduced) plays a crucial role in alleviating locking.

5 Time integration

In the present article we use the ‘midpoint’ implicit time integration scheme [25].

Introducing ψ as a generic symbol of the values of the discrete unknown functions

of time εi, γi, κi (i = 1, 2, . . . , N), u(0), w(0), ϕ(0), u(L), w(L), ϕ(L), RX(0),

RZ(0) and M(0), we have the following midpoint rule approximations for the

midpoint values of ψ and its time derivatives:

ψn+ 1
2

=
1

2
(ψn + ψn+1), (73)

ψ̇n+ 1
2

=
ψn+1 − ψn

∆t
, (74)

ψ̈n+ 1
2

=
2

∆t2
(ψn+1 − ψn − ∆t ψ̇n). (75)

Subscript n denotes the converged value at tn with the known solutions ψn and ψ̇n,

while n+ 1 denotes the unknown function value ψn+1 at time tn + ∆t; ∆t denotes

the time increment. Subscript n + 1
2

refers to the midpoint time (tn+ 1
2

= tn + ∆t
2

).

Once the nodal values of the unknowns, ψn+1, have been obtained, their velocity

and acceleration updates at tn+1 are given by:

ψ̇n+1 =
2

∆t

(
ψn+1 − ψn − ∆t

2
ψ̇n

)
, (76)

ψ̈n+1 =
4

∆t2

(
ψn+1 − ψn − ∆t ψ̇n − ∆t2

4
ψ̈n

)
. (77)

Having the nodal values at tn+ 1
2

and tn+1, we can evaluate the unknowns at any

point of the centroid axis from Eqs. (39)–(41) (strains), Eqs. (49)–(51) (displace-
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ments and rotation) and Eqs. (55)–(57) (accelerations). The axial and shear forces

and the bending moment are obtained directly from the corresponding strains and

the constitutive equations. Due to the presence of the algebraic equations, the present

system of algebraic-differential equations is stiff by definition. Therefore, the mid-

point time integration scheme is not stable if used in a straightforward fashion. In

order to improve stability, the algebraic equations, i.e. the kinematic constraints

(64)–(66), are satisfied at tn+1 rather than at tn+ 1
2
. Eqs. (61)–(63) and (67)–(72) are

taken to be satisfied at the midpoint time, tn+ 1
2
, however. This improves stability of

the time integration scheme, yet does not make it unconditionally stable.

Inserting Eqs. (73)–(75) into Eqs. (61)–(72) yields the system of non-linear al-

gebraic equations for nodal values ψn+1. The system is solved iteratively by the

Newton method.

6 Numerical examples

To show the validity of the present formulation and to illustrate its performance,

we consider three interesting examples: (i) the oscillation of a cantilever beam,

(ii) a free flight of two flexible beams connected by a hinge, and (iii) motion of

four flexible beams connected by revolute or prismatic joints. In the first example,

we focus our attention on the comparison with the formulation given in [22]. This

serves to verify the new computational procedure and to demonstrate a substan-

tial reduction of the computational time. Furthermore, the example demonstrates a

locking-free behaviour of both the previous [22] and the present strain-based for-

mulations. The second numerical example compares the present formulation with

the displacement-based formulation [14], thus verifying the formulation even fur-

ther, and analyzes possible advantages and disadvantages of the two formulations.
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The final example is representative for stiff problems [1,2,8,16,25]; it was chosen

to show the performance of our strain-based elements in such problems.

6.1 Cantilever beam

In this numerical example we compare the present formulation with the formula-

tion presented in Gams et al. [22] regarding the accuracy and the computational

efficiency. The geometric properties of the cantilever are deliberately chosen in

such a way that shear locking would occur [30], if the method of solution utilized

the displacement-based Galerkin-type finite elements.

The cantilever in Fig. 1 is loaded by force F = 250N , instantaneously applied

at t = 0 s, and remaining constant during the analysis. The cross-section is solid

rectangular. If solved by the displacement-based formulation, Rong and Lu [30]

showed that the case becomes sensitive to shear locking when log10(L/iy),where

iy =
√
Iy/A is more than 1. We adopted the following values: log10(L/iy) = 2,

L = 1 m, and the width of the cross-section b = 0.01 m. The height of the cross-

section, h, then follows: h = L
√

12/102 � 0.03464 m. According to [30], this

choice should lock the deflection for the displacement-based elements. The analysis

was run up till 0.1 s with time step ∆t = 0.0005 s.

The time variation of the tip deflection is shown in Fig. 1. The results for the tip

deflection at two different times, t = 0.05 s and t = 0.1 s, along with the maximal

deflection, the relative errors with respect to the 360 DOF of 20 FE3 solution and

the computational times are for elements of various order (Ei) and various finite

element meshes displayed in Table 1 for the present formulation and, in Table 2,

for the formulation presented in [22].
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The data in the tables show: (i) both formulations converge to the same results,

hence validating the new computational procedure, (ii) as expected, the rate of con-

vergence increases with the order of the element, (iii) good results are obtained

with only a few DOFs, (iv) locking is absent, and finally (v) computational times

are roughly 10-times smaller indicating a drastically enhanced efficiency of our

new formulation.

6.2 A two-body system in free flight

We analyze a two-body system made up of two flexible beams connected by a

revolute joint. This case was originally proposed and analyzed by Simo and Vu-

Quoc [14]. The system is initially at an inclined position (Fig. 2) and is set into

motion by applying a force and a torque at the free end (A) of the lower beam. The

applied forces are removed after 0.5 s, leaving the system to continue its motion in

free flight. Hsiao and Jang [7] and Iura and Atluri [9] also studied motion of a two-

body system in free flight, but used different data: a different value of the moment

of inertia of the upper beam and a different removal time (2.5 s in place of 0.5 s

employed here and in [14]). The accuracy check in an iteration step was performed

on the basis of the nodal displacement iterative increments, δX , using the criterion

‖δX‖
max(1, ‖X‖) < 10−10. (78)

At all time stations, four Newton’s iterations sufficed to reach the tolerance 10−10.

This proves that the rate of convergence of the Newton method was quadratic in-

deed.

The sequence of motion is depicted in Fig. 3. The system undergoes large displace-

ments and rotations, while strains remain relatively small.
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For the analysis of the accuracy of the solution, we employed the elements with

the quadratic strain interpolation and gradually increased the number of elements.

The graphs of the relative error, evaluated relative to the results of the 20-element

mesh, ‖ψN − ψ20‖/‖ψ20‖, of displacements at end points A and B as functions of

the number of finite elements (n = 2, 4, 6, 8, 10) at t = 10 s are displayed in Fig.

4.

We now compare the present formulation with the displacement-based formulation

by Ibrahimbegović and Mamouri [8]. In order to compare fairly the results of the

two formulations, we have made our own computer program based on their energy

conserving formulation. We used the reduced integration for the tangent stiffness

matrix and the residual vector to alleviate locking, whereas the mass matrix was

integrated exactly [14]. In all the analyses, the constant time integration step ∆t =

0.1 s was used.

Figs. 5–6 compare the variations of internal forces over the length of the system, if

they are calculated directly from the constitutive equations. For the displacement-

based formulation, the internal forces were evaluated only at two Gaussian points of

an element and the values marked with circles. For the strain-based formulation, the

values were obtained at 10 regularly distributed points and the variation marked by

an interpolating solid line. Fig. 5 depicts the variations at tn+ 1
2

= 9.95 s and tn+1 =

10 s for the 20-element mesh, and Fig. 6 for the 80-element mesh. The midpoint

values of the internal forces were taken as the average values of the internal forces

at times tn and tn+1. Some differences in values are observed at time tn+1 = 10 s

between the displacement-based and the present formulation for the 20-element

mesh. The differences, however, vanish for the 80-element mesh, see Fig. 6.

The comparison of the results in Figs. 5 and 6 at tn+1 = 10 s shows that the internal
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forces obtained by the displacement-based formulation on the 20-element mesh

practically coincide with those for the 80-element mesh. Thus, the internal forces

at tn+1 = 10 s seem to be better described by the displacement-based formulation.

The differences, however, appear to be much smaller, if the comparison is made at

the midpoint time tn+ 1
2

= 9.95 s.

6.3 Motion of a four-body system

This case is adopted from Ibrahimbegović and Mamouri [8]. The initial geometry

of the system along with material properties of members is depicted in Fig. 7. The

system is initially at rest and is put into motion by a concentrated moment at its

right support. The value of the moment varies linearly with time, starting from 0,

peaking 5 Nm at time 0.125 s, and vanishing at time 0.25 s. The dynamic response

within the first second of motion is observed. The system is modelled by four finite

elements (Fig. 7) with the fourth-order interpolation of strain. The system consists

of two rotational joints and one translational joint. The time step is ∆t = 0.001 s.

Ibrahimbegović and Mamouri used 20 two-node (linear) displacement-based ele-

ments with selectively reduced integration to model the system [8] and their energy

conserving time integration scheme.

Two quantities are being observed in this example: the vertical displacement at

point B and the mechanical energy of the system. The mechanical energy of the

system is calculated as a sum of kinetic and potential energies, i.e. using Eqs. (5)–

(6). The system undergoes interesting deformed configurations; some of them are

depicted in Fig. 8. The time variation of the vertical displacement at point B is com-

pared with [8] in Fig. 9. The time variation of the mechanical energy is shown in
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Fig. 10. Some disagreement in the vertical displacement at point B are observed be-

tween the two formulations. They are due to the coarse finite-element mesh and/or

low interpolation degree employed in [8].

The system represents a stiff problem, because it involves very different frequen-

cies, related to bending and axial vibrations. The time integration scheme proposed

in [8] appears to be ideally suited for such problems as it enforces the energy

conservation, and consequently, assures the unconditional stability of the time-

integration schemes. By contrast, the midpoint time integration scheme used in

our formulation does not automatically preserve the mechanical energy (Fig. 10)

and is, consequently, a conditionally stable integration scheme. Therefore, it is not

well suited for stiff systems. This is demonstrated in a sudden onset of violent os-

cillations, blow up of the mechanical energy and loss of convergence of the Newton

procedure shortly after. As clearly seen in Fig. 10, the oscillations of the total en-

ergy are not significant until 1 s. At about 1.8 s the mechanical energy blows up and

Newton’s iteration breaks down.

7 Conclusions

The present paper proposes a new finite-element formulation for the large defor-

mation, dynamic analysis of highly flexible elastic planar beam-like multibody

systems. The novelties of the present formulation are: (i) the strain-based formu-

lation, (ii) the point-wise imposition of the cross-sectional equilibrium equations,

here termed the ‘consistency conditions’, (iii) an arbitrary order of the interpolation

polynomials, and (iv) the introduction of a special algorithm for the numerical in-

tegration of the spatial integrals, which avoids the need for nested integrations and

makes the computational times much shorter.
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The numerical examples show that: (i) regarding the accuracy, the proposed finite

elements are comparable with the displacement-based elements; (ii) the present el-

ements exhibit locking-free behaviour, and (iii) the formulation is computationally

much more efficient than the one given in [22]; for the range of numerical exam-

ples presented in the paper, the computational times of the present formulation are

roughly 10-times smaller than those of the formulation given in [22]; (iv) the mid-

point time integration scheme in conjunction with the present strain-based finite

elements is conditionally stable.
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List of captions

Fig. 1. Cantilever beam. (a) Geometry and loading, (b) tip deflection. Material

and cross-sectional data: E = 2 × 1011 N/m2, ν = 0.3, ρ = 7860 kg/m3,

b/h = 0.01/0.03464 m.

Fig. 2. Two-body system. (a) Initial configuration, (b) time variation of force S5, (c) time

variation of torque S6. Material and cross-sectional data: EA = GAs = 1 × 106 N,

EIy = 1 × 104 Nm2, ρA = 1 kg/m, ρIy = 10 kgm.

Fig. 3. Motion of the two-body system in time interval [0, 10.5] s. The sequence of motion

is depicted in 0.75 s intervals. Time step ∆t = 0.05 s. Two fourth-order strain-based finite

elements.

Fig. 4. Motion of the two-body system. Convergence properties at t = 10 s. Relative error

vs. number of finite elements for point B. Square, u; diamond, w; circle, ϕ.

Fig. 5. Motion of the two-body system. Variation of internal forces over length at

tn+ 1
2

= 9.95 s, top, and at tn+1 = 10 s, bottom. 20 quadratic elements. Solid line: present

formulation, circles: displacement-based formulation [8].

Fig. 6. Motion of the two-body system. Variation of internal forces over length at

tn+ 1
2

= 9.95 s, top, and at tn+1 = 10 s, bottom. 80 quadratic elements. Solid line: present

formulation, circles: displacement-based formulation [8].
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Fig. 7. Four-body system. (a) Geometry, (b) time variation of torque S6. Material and

cross-sectional data: EA = 5.65 × 105 N, GAs = 1.4038 × 105 N, EIy = 3.040 Nm2,

ρA = 0.0135 kg/m, ρIy = 1.125 × 10−6 kgm.

Fig. 8. Four-body system. The sequence of deformed shapes in time interval [0, 0.45] s.

The sequence is depicted in 0.05 s intervals.

Fig. 9. The time variation of vertical displacement wB . Solid line: present formulation,

circles: Ibrahimbegović and Mamouri [8].

Fig. 10. Time variation of total energy of the system. In the inserted detail, a closer view of

the energy variation with time is shown for t ∈ [0.8, 1] s. Oscillations are clearly visible.
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Figure 4
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Table 1

Present formulation.

t = 0.05 s t = 0.1 s

FE DOF w(L) [m] Rel. Err. w(L) [m] Rel. Err. Max. w(L) [m] Comp. Time [s]�

1 FE2 15 0.02296 4.E−02 0.00397 4.E−01 0.02405 4.0

1 FE3 18 0.02168 2.E−02 0.00790 1.E−01 0.02400 4.7

1 FE4 21 0.02212 1.E−04 0.00708 1.E−02 0.02360 5.3

2 FE2 30 0.02177 2.E−02 0.00687 2.E−02 0.02404 6.5

2 FE3 36 0.02214 8.E−04 0.00697 5.E−03 0.02368 7.7

2 FE4 42 0.02216 2.E−03 0.00700 4.E−04 0.02372 9.3

4 FE2 60 0.02208 2.E−03 0.00705 7.E−03 0.02382 11.5

4 FE3 72 0.02213 4.E−04 0.00700 3.E−04 0.02375 14.3

4 FE4 84 0.02212 5.E−05 0.00700 9.E−05 0.02377 17.1

20 FE3 360 0.02212 0.00700 0.02377 64.4
� The time interval [0, 0.1 ]s.
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Table 2

The strain-based formulation with the nested integration [22].

t = 0.05 s t = 0.1 s

FE DOF w(L) [m] Rel. Err. w(L) [m] Rel. Err. Max. w(L) [m] Comp. Time [s]�

1 FE0 9 0.00672 7.E−01 0.01688 1.E+00 0.01806 23.6

2 FE0 18 0.02208 2.E−03 0.00039 9.E−01 0.02256 41.8

3 FE0 27 0.02209 1.E−03 0.00317 5.E−01 0.02338 60.9

4 FE0 36 0.02231 9.E−03 0.00506 3.E−01 0.02357 77.0

5 FE0 45 0.02177 2.E−02 0.00540 2.E−01 0.02376 98.4

6 FE0 54 0.02181 1.E−02 0.00610 1.E−01 0.02385 115.8

8 FE0 72 0.02200 5.E−03 0.00684 2.E−02 0.02393 148.7

10 FE0 90 0.02205 3.E−03 0.00699 3.E−05 0.02388 176.9

40 FE0 360 0.02211 0.00699 0.02379 743.0
�The time interval [0, 0.1 s
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