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Abstract

We present a strain-based finite-element formulation for the dynamic analysis of flexible
elastic planar multibody systems, composed of planar beams. We consider finite displace-
ments, rotations and strains. The discrete dynamic equations of motion are obtained by
the collocation method. The strains are the basic interpolated variables, which makes the
formulation different from other formulations. The further speciality of the formulation is
the strong satisfaction of the cross-sectional constitutive conditions at collocation points.
In order to avoid the nested integrations, a special agorithm for the numerical integration
over the length of the finite element is proposed. The midpoint scheme is used for the
time integration. The performance of the formulation isillustrated via numerical examples,

including a stiff multibody system.
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1 Introduction

Beam is one of the basic components of the multibody mechanisms and engineer-
ing structures. For various reasons beams are often highly flexible, which requires
the geometrically non-linear dynamic theory to be considered in the analysis. A
number of geometrically non-linear dynamic finite-element formulations have been
proposed (see, e.g. [1-16]), which seem to be sufficiently accurate and efficient for
practical purposes. These finite-element formulations employ displacements and
rotations|[3,4,7,8,11,14-16] or absolute nodal coordinates[5,6,10,12,13] asthe ba-

sic interpolated variables.

The present formulation, though, employs strains. The strain-based finite elements
seem to be a promising alternative. They have recently been applied in the geo-
metrically and materially non-linear static analysis of planar and spatial reinforced
concrete structures [17-19] and in the analysis of slip in composite beams [20,21];
there, they have proved to be accurate and robust, exhibiting no locking and demon-
strating ability to consider the strain localization in a natural way. The first attempt
to apply strain-based elements to dynamics was made by Gams et al. [22]. Their
formulation was limited to the constant interpolation of strains. When compared
to the displacement-based formulation, the strain-based one is more complex with

regard to both theory and computer implementation.

In this paper we present a new, improved family of strain-based finite elements,
which represents a substantial generalization of the results presented in [22]. The
improvements are made regarding (i) the order of interpolation of strains, which
is now arbitrary, (ii) the discretization method, which is here the collocation in

contrast to the Galerkin method used in [22], and (iii) the implementation, which



now fully avoids the nested numerical integrations.

2 Kinematic equations

We consider an initialy straight planar elastic beam element of initial length L in
the (X, Z)-plane of a spatia Cartesian coordinate system (X, Y, 7). We assume
that the centroid axis of the beam is parallel to the X -axisin the undeformed state.
The shape of the cross-section is assumed constant and symmetric with respect to
the plane of deformation. The position of across-section relativeto the beam axisis
identified by the material coordinate = € [0, L]. Reissner’s beam theory [23] isem-
ployed. It assumesthe Bernoulli hypothesisof planar and undistorted cross-sections
and considers finite displacements, rotations, and (membrane, shear and bending)
strains. Along its centroid axis the beam is subjected to time dependent distributed
loads px (z,t), pz(z,t) and moment my (z,t) (measured per unit length of unde-
formed axis; ¢ denotestime), and generalized point loads S, (t) (k =1,2,...,6) at
itsendsz = 0 and x = L. Loads are assumed to be deformation-independent. For

further details the reader may consult, e.g. [23,24].

The components of the displacement vector, w, of an arbitrary point, x, on the
centroid axisin the X - and Z-directions are denoted by w(z, t) and w(z, t), respec-
tively. The relations between the displacement components and the strains were

derived by Reissner [23] and read

I+ — (1+4¢)cosp —ysinp =0, (1)
w' + (1+¢)sing —ycosp =0, (2
¢ —k=0. 3

In Egs. (1)«3) the prime (") denotes the derivative with respect to x, whereas func-



tionse(z,t), v(x,t) and x(z, t) denote the extensional strain, the shear strain (the
rotation of the cross-section relative to the normal to the deformed axisat =) and the
bending strain (the pseudocurvature [26]) of the centroid axis, respectively, while

o(z,t) istherotation of the cross-section at «.

3 Equations of motion

The equations of motion of the beam will be derived from Hamilton's principle

[25], which says that the following variation is zero

5 " (B, — B)di=0 )

t1

for any kinematically admissible variations of displacements, provided that the
variations of displacementsvanishat ¢; and ¢,. In Eq. (4) and throughout the text, §
denotes the variation. £, and E) are potential and kinetic energies, respectively. ¢,
isthe lower and ¢, the upper boundary of the time interval over which the dynamic

equilibrium is satisfied. The kinetic energy of the beam is given by the expression
L 1 /L . 9 1t 2
Ek—§/0 pPAU dx+§/0 pAWw dx+§/0 pl, o= dz, )

where p denotes density of material, A isthe areaand I, the centroidal moment of
inertia of the cross-section about its y-axis. The superposed dot denotes the time

derivative. The potential energy of the elastic beam is
E, = l/LEA 24 +1/LGA 24 +1/LEJ 2z —
P2 o =Ty TS v i G

L L L 6 (6)
/Opxudx—/o pzwdx—/o mycpdx—;SiUi.

E isYoung's modulus and GG shear modulus of material; A isthe shear area of the

cross-section. U; (i = 1,2,...,6) are the generalized boundary displacements at



x = 0and z = L; they are energy complements to the generalized boundary forces

S; (for further details see [24,27-29]).

Egs. (1)—(3) represent three constraining conditionsfor six functionsu(x, t), w(z, t),
o(x,t), e(x,t), y(x,t) and k(x, t). Following the methodology inspired by the La-
grangian multipliers method in constrained problems of calculus of variation, three
independent Lagrangian multipliers R x, Rz and M are introduced, by which the
constraints (1)—3) are multiplied and then integrated over the length of the beam.
Adding the resulting equations to the functiona in Eq. (4) yields the augmented

Hamilton principle

t L
5 2<Ep—Ek+/ Ry (144 — (1+¢)cosp — ysing) dz +
t1 0
L
/Rz(w'—i-(1+6)sing0—ycoscp)dx+ (7
0

/OLM(QO,—H) dx) dt = 0.

Eq. (7) requiresthe variation of anumber of terms. Only the variation of the kinetic

energy isworked out here [27]:

to to L L L
5 [ Bedt = / ( / pAiside + / p Ay dz + / Pl 55 da)dt
t1 t1 0 0 0

= /OL (,oAu(Su + pAwdw + p[y(p&p) ‘i dx —

/ tQ( /OL pAiidudz + /OL pAibowdr + /OL plygdiedz) dt.

Asthefirst variations du, dw and d¢ must vanish at ¢, and ¢,, we have

to to L L L
5 Ekdt:—/ (/ pAuaudx+/ pAwawdx+/ pl, 3 dipdr) dt.
t1 t1 0 0 0
8
After Eq. (7) has been varied, and the terms R x du’, R 70w’ and Mdy' integrated



by parts and rearranged, we obtain

L L L
/ (BAs — N)de da + / (GAyy — Q) 6y da + / (ELk — M) ok da+
0 0 0
L L
/0 (R'x + px — pAil) 5udx+/0 (R + pz — pAw) dw dx +
L
/0 (./\/l/ —(1+e)Q+ YN +my — pchb) dpdr +
L
/ (1+u’—(1+€)cos<p—vsincp)(57?,xdx+ ©)
0
L L
/ (w’ +(1+¢)sinyp — vcosgp)(SRdejL/ (¢ —K)oMdx —
0 0
(S + Rx(0)) 6U1 — (S + Rz(0)) 0Uz — (S5 + M(0)) 6Us —
(S4—Rx(L)) 0Us — (S5 = Rz(L)) 6Us — (S6 — M(L)) 6Us = 0.
In Eq. (9) variations de, §v, ok, du, dw, dp, IR x, 0Rz and M are independent
arbitrary functions of x, and variations Uy, 6Us, 6Us, 60Uy, dUs and dUg are inde-
pendent arbitrary parameters, provided that the variation is zero if the correspond-
ing nodal displacement U; is prescribed. According to the fundamenta lemma of
calculus of variation, the coefficients of the independent variations should vanish

identically for Eq. (9) to be satisfied for arbitrary variations. The following equa-

tions of motion of the beam are obtained for any ¢ > 0:

Constitutive equations, x € [0, L:

EAe — N =0, (10)
GAy —Q =0, (11)
Elk — M = 0; (12)

Kinematic equations, = € (0, L):

I+ — (1+4¢)cosp —ysinp =0, (13)
w' + (1+¢)sing —ycosp =0, (14)
o' — k=0 (15)



Equations of motion, z € (0, L):

Rlx + px — pAii = 0, (16)
Ry + pz — pAi = 0, (17)
M —1+e)Q+yN +my —pl, = 0. (18)

The natural and essential boundary conditions corresponding to Egs. (10)—(18) are

r=0: S +Rx(0)=0 o u(0)="U, (19)
So+Rz(0)=0 or w(0) = Uy, (20)
Sy + M(0) =0 or ©(0) = Us; (22)
v=L: S —Rx(L)=0 o u(L)=U, (22)
Ss —Rz(L)=0 or w(L) = Us, (23)
S¢ — M(L) =0 or o(L) = Us. (24)

Egs. (10)—(18) constitute the system of nine equations for nine unknown functions
e(x,t), v(x,t), k(z,t), u(z, t), w(x,t), (x,t), Rx(z,t), Rz(x,t) and M(x,t)

along with the natural and essential boundary conditions (19)—(24).

From Egs. (16)—18) it isclear that the Lagrangian multipliers R x and R » represent

axial and shear forces with respect to the spatial coordinate system

N = Rx cosp — Rz sin g, (25)

Q =Rxsiny + Rz cos p, (26)

while M is the bending moment. In order to minimize the number of unknown
functionsin our final discretized system of equations, some of these equations are
integrated separately. The integration of kinematic Egs. (13)—(15) with respect to «

gives the displacements and the rotation at x in terms of the deformation variables,



g,y and k:

u(z, t) = u(0,t) + /Ox((l +€) cos ¢ + ysin go)d§ -z, (27)
w(z,t) =w(0,t) — /Ox((l + ¢) sing — vy cos cp)dg, (28)
o(x,t) = p(0,t) + /Om kd€. (29)

While u(0,t) = Uy (t), w(0,t) = Usx(t), ¢(0,t) = Us(t) can automatically meet
any given essential boundary conditions at * = 0, parameters u(L,t), w(L,t),
(L, t) do not automatically satisfy the conditionsat = = L, unlessstrainse, v and
r are chosen exactly as needed. Consequently, one must explicitly requirethat <,

and ~ be such that for any time ¢

L
u(L,t) = u(0,1) +/0 ((1 + ) cos p + ysin gp) de — L =U4(t), (30)
w(L,t) =w(0,t) — /OL((l + &) sinp — vy cos <p) dz = Us(¢), (32)
o(L,1) = (0, 1) + /OL kda = Us(t). (32)

The relations between the Lagrangian multipliers R x, R, and M and the strains

g, v and « are obtained by the integration of Egs. (16)—(18):

Ric(r,) = R (0,1) = [ (px — pA i) de, (33)
Ry(.t) = Ry(0.1) = [ (7 = pAi) de. (34)
M(g:,t)zM(o,tH/Ox (L +2)Q =N —my +pL,3)dé. (35)

It is clear that Rx(L,t), Rz(L,t) and M(L,t) depend on strains. If they are to

meet the prescribed natural boundary conditionsat = = L, the following equations

must be satisfied:
L
Rx(L,t) =Rx(0,t) (px — pA i) dr = Sy(t), (36)
0
L
Rz(L,t) = Rz(0,1) (pz — pAw) dx = S5(t), (37)

0



M(L,t) :./\/l(O,t)+/OL((1+6)Q—7N—my+pIy¢) dz = Sg(t). (38)

Next we claim that Egs. (27)—29) and (33)—35) are satisfied. Consequently, aso
Egs. (13)«15) and (16)—(18) are satisfied. Thus, R x (L, t), Rz(L,t) and M(L,t)
can be expressed by R x (0,t), R~(0,t), M(0, t) and strains using Egs. (36)—(38).
Theremaining set of the equations of the beam, Egs. (10)—(12), the boundary condi-
tions (19)—24) and the constraints (30)—(32) then constitute the set of twelve equa-
tions for twelve unknowns, i.e. three constitutive equations, six boundary condi-
tions and three kinematic constraints for the determination of three unknown func-
tionsof x and ¢, i.e. e(x,t), v(x,t) and k(x, t) and nine time dependent parameters
(u(0,), w(0,1), ©(0,1), u(L, 1), w(L,t), o(L,t), Rx(0,t), Rz(0,), M(0,1)).
These eguations are supplemented by an appropriate set of initial conditions at

t=0.

4  Finite-dement for mulation

The Lagrangian polynomias, P;(z) (i = 1,2,...,N), of degree N — 1 are em-
ployed for the spatial approximation of the unknown functions £(z, t), v(z, t) and

k(z,t) and their variations. Interpolation points are assumed to be distributed reg-

e(z,t) = Z Pi(x) gi(t) — de(x) =D Pix) 65(2) (39)
V(@ t) =3 Pilx)v,(t) — dy(z) =3 Pilx) 67:(t), (40)
k(x,t) = Z Py(x) ki(t) — dr(z) = Piz) ori(t). (42)

Once the nodal values ¢;, v, and x; at a given time ¢,, are known, the remaining

guantities can easily be determined. Since the terms to be encountered involve in-



tegrals, which cannot be analytically integrated for higher-order polynomials, one
isforced to use the numerical integration. For higher-order interpolations this rep-
resents a computationally demanding task, because the nested integral s of depth up
to five have to be evaluated in some terms of the tangent stiffness matrix, which
renders the calculations slow and computer memory demanding. Let us give an
example. Assume that we need the value of the multiplier R x at a given point z.

After inserting u(z, t) from Eq. (27) into Eq. (33), we have

Roc(z,t) =R (0,1) — /Om(px _pAil)de
= Rx(0.1) = [ (px — pA(0.1)) ¢

T 13 d2
+/ pA/ —2((1+6) cosgo—i—vsincp) dnd§. (42)
0 o dt

The Gaussian integration of the double integral in Eq. (42) requires a nested al-
gorithm: for each Gaussian point of the external numerical integration, a complete
evaluation of the internal integral up to the Gaussian point is required. Hence the
number of the numerical operationsincreaseswith N2 + N compared to N needed
inasingleintegral. R x is needed both in the residua vector and the stiffness ma-
trix integrations; this requires the third numerical integration in arow. Hence, these
nested integrations become computationally very demanding. An alternativeis pro-

posed here, which elegantly avoids these inconveniences.

The key idea of a numerical integration is to choose a set of K independent func-
tions P;(£) to approximate the integrand, f(¢), £ € [—1, 1], intheform of alinear

combination
GESIIIAG (43)

with &, being the abscissae of the points of interpolation. After the approximation

(43) is inserted into the integral and the integration performed over the domain

10



[—1, 1], we have
1 K
[ F(©) de =Y wif(€) (44)

withw; = [1, P;(€) d¢ denoting the weights of the integration.

The sameideaisfollowed in the present paper. In order to integrate numerically the
integrals involved in our formulation, we first have to interpolate their integrands.
The implementation is, however, done in a specific way, as explained in the sequel.
For example, to obtain the displacements by the integration of Egs. (27)—28), we
interpol ate the spatial derivativesof displacementsu’(z,t), w'(x, t) inthefollowing

way:
N
u'(x,t) =) Pi(x) ait), (45)
N
w'(@,t) = Pix) bi(t), (46)
with a; and b; (i = 1,2, ..., N) being expressed by the nodal variables (¢;, ;, ;)

through kinematic Egs. (1) and (2):

a; = (14¢;)cosp, +,;sinp; — 1, (47)

b; = —(1 +&;)sinp, + 7, cos y;. (48)

P;(&) are taken to be the Lagrangian polynomias (i = 1,2,3, ..., N). Integrating
Egs. (45) and (46) with respect to = gives displacements u(z, ¢) and w(x, t)
N
u(a,t) = u(0,8) + 3 IP(x) ai(t), (49)

=1
N
w(z,t) = w(0,t) + > IPi(z) b;(t). (50)
=1
Here IP,(z) = fPZ-(g) d¢ isthe analytical integral of the Lagrangian polynomial
0
P;(x). Rotation ¢(z, t) is obtained by the direct integration of Eq. (3) in combina-

11



tion with Eq. (41):
T N
ple,t) = 9(0,6) + [ w1 dg = 0(0.) + S IP() milt). (5D)
=1
Theideaof interpolating derivativesrather than directly numerically integrating the
integrand is also followed for M. Hence
N
M (z,t) =Y Pi(z) ¢(1) (52)

i=1

withe¢; (i = 1,2,..., N) following from Eq. (18):
¢ = (14+¢e)Qi — v Ni —my; + ply ;. (53)
Integrating Eq. (52) with respect to = gives M (z, t)

N
M(z,t) = M(0,t) + D IP(z) ¢;(t). (54)

=1
The need for the integration other than that of the Lagrangian polynomialsis then
completely eliminated. This integration can be performed analytically and only

once, which renders the integration computationally very effective.

The interpolations introduced in Egs. (45)—(46) and (52) should be regarded as a
part of the numerical integration method, and not as the interpolation in the sense

of the finite e ement method.

The second time derivatives of u, w,  are obtained by the differentiation of Egs.

(49)(51)

ii(x,t) = ii(0,t) + Zj IP;(z) i (1), (55)
w(z,t) = w(0,t) + Zj IP;(z) b;(2), (56)
@(I, t) = 90(07 t) + Z [Pz(x) "fz(t) (57)

=1

12



Their spatial integralsare needed in Egs. (33)—(35) for calculating R x (z, t), Rz (x, t)

and Mz, t) and are dealt with in the following way:

z N

[, ydg = ii(0,6)x + Y- HP(x) i), (58)
0 =1

y N .

604 = 0.) 2+ 32 P () i), (59
/gpétdg chtm+ZIIP Ra(t), (60)
0 i=1

z ¢ .

where IIP;(x) =[ [ P;(n) dn d¢. Thetime derivativesd, and b; are obtained in terms
00

of ¢;, v, and x; and their time derivatives obtained by the differentiation of Egs.

(47)—48).

Our finite-element formulation is based on the collocation-type of the spatial dis-
cretization [19,26] rather than on the standard Galerkin-type. We assume that the
collocation and the interpolation points coincide, so that the points are regularly
distributed over the beam length, x; = (i — 1) 7. Egs. (10)«12), (19)+24) and
(30)«32) yield the following system of semi-discrete equations of motion of the

beam finite element:

gi = BA(t) = Ni(t) =0, i=1,....N (61)
Gyii = GAN(E) — Qit) =0, i=1,... N (62)
Gonsi = ELgi(t) = My(t) =0, i=1,...,N (63)
gsn+1 = u(L, 1) —un(t) =0, (64)
gsn+2 = w(L,t) —wy(t) =0, (65)
gsn+s = o(L, 1) — o (t) =0, (66)
gsn+a = S1(t) + Rx(0,1) = 0, (67)
gan+5 = S2(t) + Rz(0,1) =0, (68)

13



93N+6 = 53(t> + M(07 t) = 07 (69)

gsn+7 = Sa(t) — Rxn(t) =0, (70)
g3n+s = 95(t) — Rzn(t) =0, (71)
gan+9 = Se(t) — My (t) =0. (72)

uN, WN, PN, Rxn, Rzny and My denotethe values of the variablesat the end point
1 = N. Egs. (61)—«72) constitute a system of 3N + 9 algebraic—differential equa-
tions for 3N + 9 unknown functions of time: ,(t), v,(t), x;(t) (i = 1,2,..., N),
u(0,t), w(0,t), ©(0,t), u(L,t), w(L,t), p(L,t), Rx(0,t), Rz(0,t) and M(0,1).
Eqgs. (64)—69) arealgebraic, and Egs. (61)—63) and (70)—(72) aredifferential equa-
tions in time of the second order. Observe that this system has an implicit form
F(u,u,i,t) = 0 and thus does not comply with the standard form M4 +
P(u) = F used, e.g. in[14]. The constitutive equations (61)—(63) represent the so
called consistency conditions [26,28] imposing the equality of the cross-sectional
constitutive and equilibrium forces. The satisfaction of the consistency conditions
in a point-wise manner can increase the accuracy of internal forces in materialy
non-linear problems. Observe that the consistency conditions are not strongly sat-

isfied in displacement-based formul ations.

The internal degrees of freedom, i.e. R x(0,t), Rz(0,t), M(0,t), and the internal
nodal strains, ¢(t), v,(t), x;(t) (j = 1,2,..., N), are eliminated prior to assem-
bling the equations of motion of the structure. This leaves us only with boundary
displacements and rotations of each element, and a fairly small tangent stiffness
matrix of the entire structure. Introducing any kind of joints in such a formulation
presents no extra complexity, as the desired degrees of freedom are condensed out

in the same way as the internal nodal strains or forces.

In the present formulation, only the Lagrangian polynomials of a given degree

14



need to be integrated, and this integration can be prepared in advance. Thus, the
order of the numerical integration becomes irrelevant. This differs from standard
displacement-based formul ations, where the order of the numerical integration (full,

reduced or selectively reduced) playsacrucial role in alleviating locking.

5 Timeintegration

In the present article we use the ‘midpoint’ implicit time integration scheme [25].
Introducing ¢ as a generic symbol of the values of the discrete unknown functions
of timee;, v;, k; (1 = 1,2,..., N), u(0), w(0), ¢(0), u(L), w(L), ¢(L), Rx(0),
Rz(0) and M(0), we have the following midpoint rule approximations for the

midpoint values of ¢) and itstime derivatives.

1
wn—l-% = 5(?% + wn—l—l)? (73)
Dy = Lot (74)
. 9 .
wn-i-% = E(wn—l—l - 1% — At ¢n) (75)

Subscript n denotes the converged value at ¢,, with the known solutions ¢, and ¢,
whilen + 1 denotes the unknown function value v, , , at timet, + At; At denotes
the time increment. Subscript n +  refers to the midpoint time (¢,,,. 1 = t, + ah.
Once the nodal values of the unknowns, +,, ., have been obtained, their velocity

and acceleration updates at ¢,,, ; are given by:

. 2 At -

bot = 27 (Vo1 —¥n— 5% (76)
. 4 . At? ..

¢n+1 = @ <wn+1 - 1% — At ¢n - Tt ¢n> . (77)

Having the nodal values at ¢, 1 and t,,,1, we can evaluate the unknowns at any

point of the centroid axis from Egs. (39)—41) (strains), Egs. (49)—(51) (displace-

15



ments and rotation) and Egs. (55)—«57) (accelerations). The axial and shear forces
and the bending moment are obtained directly from the corresponding strains and
the constitutive equations. Dueto the presence of the algebrai c equations, the present
system of algebraic-differential equationsis stiff by definition. Therefore, the mid-
point time integration scheme is not stable if used in a straightforward fashion. In
order to improve stability, the algebraic equations, i.e. the kinematic constraints
(64)—(66), are satisfied at ¢, ; rather thanat ¢, 1 Egs. (61)—<63) and (67)—72) are

taken to be satisfied at the midpoint time, ¢ 1, however. Thisimproves stability of

1
n+2

the time integration scheme, yet does not make it unconditionally stable.

Inserting Egs. (73)—(75) into Egs. (61)—«72) yields the system of non-linear al-
gebraic equations for nodal values ¢, ;. The system is solved iteratively by the

Newton method.

6 Numerical examples

To show the validity of the present formulation and to illustrate its performance,
we consider three interesting examples: (i) the oscillation of a cantilever beam,
(ii) afree flight of two flexible beams connected by a hinge, and (iii) motion of
four flexible beams connected by revolute or prismatic joints. In the first example,
we focus our attention on the comparison with the formulation givenin [22]. This
serves to verify the new computational procedure and to demonstrate a substan-
tial reduction of the computational time. Furthermore, the example demonstrates a
locking-free behaviour of both the previous [22] and the present strain-based for-
mulations. The second numerical example compares the present formulation with
the displacement-based formulation [14], thus verifying the formulation even fur-

ther, and analyzes possible advantages and disadvantages of the two formulations.
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The final example is representative for stiff problems[1,2,8,16,25]; it was chosen

to show the performance of our strain-based elementsin such problems.

6.1 Cantilever beam

In this numerical example we compare the present formulation with the formula-
tion presented in Gams et al. [22] regarding the accuracy and the computational
efficiency. The geometric properties of the cantilever are deliberately chosen in
such away that shear locking would occur [30], if the method of solution utilized

the displacement-based Gal erkin-type finite elements.

The cantilever in Fig. 1 is loaded by force FF = 250N, instantaneously applied
att = 0 s, and remaining constant during the analysis. The cross-section is solid
rectangular. If solved by the displacement-based formulation, Rong and Lu [30]
showed that the case becomes sensitive to shear locking when log,,(L/i,),where
i, = y/1,/A ismore than 1. We adopted the following values: log,,(L/i,) = 2,
L = 1 m, and the width of the cross-section b = 0.01 m. The height of the cross-
section, h, then follows: h = L+/12/10% ~ 0.03464 m. According to [30], this
choice should lock the deflection for the displacement-based el ements. Theanaysis

wasrun up till 0.1 swith time step At = 0.0005 s.

The time variation of the tip deflection is shown in Fig. 1. The results for the tip
deflection at two different times, ¢ = 0.05 sand t = 0.1 s, along with the maximal
deflection, the relative errors with respect to the 360 DOF of 20 FE; solution and
the computational times are for elements of various order (E;) and various finite
element meshes displayed in Table 1 for the present formulation and, in Table 2,

for the formulation presented in [22].
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The data in the tables show: (i) both formulations converge to the same results,
hence validating the new computational procedure, (ii) as expected, the rate of con-
vergence increases with the order of the element, (iii) good results are obtained
with only a few DOFs, (iv) locking is absent, and finally (v) computational times
are roughly 10-times smaller indicating a drastically enhanced efficiency of our

new formulation.

6.2 A two-body system in free flight

We analyze a two-body system made up of two flexible beams connected by a
revolute joint. This case was originally proposed and analyzed by Simo and Vu-
Quoc [14]. The system is initidly at an inclined position (Fig. 2) and is set into
motion by applying aforce and atorque at the free end (A) of the lower beam. The
applied forces are removed after 0.5 s, leaving the system to continue its motion in
freeflight. Hsiao and Jang [ 7] and luraand Atluri [9] also studied motion of atwo-
body system in free flight, but used different data: a different value of the moment
of inertia of the upper beam and a different removal time (2.5s in place of 0.5s
employed here and in [14]). The accuracy check in an iteration step was performed

on the basis of the nodal displacement iterative increments, 9.X, using the criterion

[ERY

— <107 (78)
max(1, [|X]])

At all time stations, four Newton's iterations sufficed to reach the tolerance 10 1°.
This proves that the rate of convergence of the Newton method was quadratic in-

deed.

The sequence of motionisdepicted in Fig. 3. The system undergoes large displace-

ments and rotations, while strains remain relatively small.
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For the analysis of the accuracy of the solution, we employed the elements with
the quadratic strain interpolation and gradually increased the number of elements.
The graphs of the relative error, evaluated relative to the results of the 20-element
mesh, ||vy — Yyl /1]1090||, OF displacements at end points A and B as functions of
the number of finite elements (n = 2, 4, 6, 8, 10) at t = 10 saredisplayed in Fig.
4.

We now compare the present formulation with the displacement-based formulation
by Ibrahimbegovi¢ and Mamouri [8]. In order to compare fairly the results of the
two formulations, we have made our own computer program based on their energy
conserving formulation. We used the reduced integration for the tangent stiffness
matrix and the residual vector to aleviate locking, whereas the mass matrix was
integrated exactly [14]. In all the analyses, the constant time integration step At =

0.1 swas used.

Figs. 5-6 compare the variations of internal forces over the length of the system, if
they are calculated directly from the constitutive equations. For the displacement-
based formulation, theinternal forces were evaluated only at two Gaussian points of
an element and the values marked with circles. For the strain-based formulation, the
values were obtained at 10 regularly distributed points and the variation marked by
an interpolating solid line. Fig. 5 depictsthe variations at byt = 9.95sandt, | =
10 s for the 20-element mesh, and Fig. 6 for the 80-element mesh. The midpoint
values of the internal forces were taken as the average values of the internal forces
at timest, and t,,,,. Some differences in values are observed at time ¢,,,; = 10s

between the displacement-based and the present formulation for the 20-element

mesh. The differences, however, vanish for the 80-element mesh, see Fig. 6.
The comparison of theresultsin Figs. 5and6 at ¢,,. ; = 10 sshowsthat theinternal
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forces obtained by the displacement-based formulation on the 20-element mesh
practically coincide with those for the 80-element mesh. Thus, the internal forces
att,,1 = 10 sseem to be better described by the displacement-based formulation.
The differences, however, appear to be much smaller, if the comparison is made at

the midpointtime?,, 1 = 9.95s.

6.3 Motion of a four-body system

This case is adopted from Ibrahimbegovi¢ and Mamouri [8]. The initial geometry
of the system along with material properties of membersis depicted in Fig. 7. The
system isinitially at rest and is put into motion by a concentrated moment at its
right support. The value of the moment varies linearly with time, starting from 0,
peaking 5 Nm at time 0.125 s, and vanishing at time 0.25 s. The dynamic response
within thefirst second of motion is observed. The system is modelled by four finite
elements (Fig. 7) with the fourth-order interpolation of strain. The system consists

of two rotational joints and one trandational joint. Thetime stepis At = 0.001s.

Ibrahimbegovi¢ and Mamouri used 20 two-node (linear) displacement-based ele-
mentswith selectively reduced integration to model the system [8] and their energy

conserving time integration scheme.

Two quantities are being observed in this example: the vertical displacement at
point B and the mechanical energy of the system. The mechanical energy of the
system is calculated as a sum of kinetic and potential energies, i.e. using Egs. (5)—
(6). The system undergoes interesting deformed configurations; some of them are
depicted in Fig. 8. Thetimevariation of the vertical displacement at point B iscom-

pared with [8] in Fig. 9. The time variation of the mechanical energy is shown in
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Fig. 10. Some disagreement in the vertical displacement at point B are observed be-
tween the two formulations. They are due to the coarse finite-element mesh and/or

low interpolation degree employed in [8].

The system represents a stiff problem, because it involves very different frequen-
cies, related to bending and axial vibrations. The time integration scheme proposed
in [8] appears to be ideally suited for such problems as it enforces the energy
conservation, and consequently, assures the unconditional stability of the time-
integration schemes. By contrast, the midpoint time integration scheme used in
our formulation does not automatically preserve the mechanical energy (Fig. 10)
and is, consequently, a conditionally stable integration scheme. Therefore, it is not
well suited for stiff systems. Thisis demonstrated in a sudden onset of violent os-
cillations, blow up of the mechanical energy and loss of convergence of the Newton
procedure shortly after. As clearly seen in Fig. 10, the oscillations of the total en-
ergy are not significant until 1 s. At about 1.8 sthe mechanical energy blows up and

Newton’s iteration breaks down.

7 Conclusions

The present paper proposes a new finite-element formulation for the large defor-
mation, dynamic analysis of highly flexible elastic planar beam-like multibody
systems. The novelties of the present formulation are: (i) the strain-based formu-
lation, (ii) the point-wise imposition of the cross-sectional equilibrium equations,
here termed the * consistency conditions', (iii) an arbitrary order of the interpolation
polynomials, and (iv) the introduction of a special algorithm for the numerical in-
tegration of the spatial integrals, which avoids the need for nested integrations and

makes the computational times much shorter.
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The numerical examples show that: (i) regarding the accuracy, the proposed finite
elements are comparabl e with the displacement-based elements; (ii) the present el-
ements exhibit locking-free behaviour, and (iii) the formulation is computationally
much more efficient than the one given in [22]; for the range of numerical exam-
ples presented in the paper, the computational times of the present formulation are
roughly 10-times smaller than those of the formulation givenin [22]; (iv) the mid-
point time integration scheme in conjunction with the present strain-based finite

elementsis conditionally stable.
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List of captions

Fig. 1. Cantilever beam. (d) Geometry and loading, (b) tip deflection. Material
and cross-sectiona dataa E = 2 x 10''N/m?, v = 03, p = 7860kg/m?,

b/h = 0.01/0.03464 m,

Fig. 2. Two-body system. (@) Initial configuration, (b) time variation of force S, () time
variation of torque Ss. Material and cross-sectional data: EA = GA, = 1 x 106N,

EI, =1 x 10*Nm?, pA = 1kg/m, pI, = 10 kgm.

Fig. 3. Motion of the two-body system in timeinterval [0, 10.5] s. The sequence of motion
is depicted in 0.75 sintervals. Time step At =0.05s. Two fourth-order strain-based finite

elements.

Fig. 4. Mation of the two-body system. Convergence properties at ¢ = 10 s. Relative error

vs. number of finite elements for point B. Square, u; diamond, w; circle, ¢.

Fig. 5. Motion of the two-body system. Variation of internal forces over length at

t = 9.95s, top, and at t,,, 1 = 10, bottom. 20 quadratic elements. Solid line: present

1
n+2

formulation, circles: displacement-based formulation [8].

Fig. 6. Motion of the two-body system. Variation of internal forces over length at

t, = 9.95s, top, and at ¢, = 10 s, bottom. 80 quadratic elements. Solid line: present

formulation, circles: displacement-based formulation [8].
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Fig. 7. Four-body system. (a) Geometry, (b) time variation of torque . Material and
cross-sectional datas EA = 5.65 x 10° N, GA; = 1.4038 x 10°N, EI, = 3.040 Nm?,
pA = 0.0135kg/m, pI, = 1.125 x 10-6 kgm.

Fig. 8. Four-body system. The sequence of deformed shapes in time interval [0, 0.45]s.
The sequence is depicted in 0.05 sintervals.

Fig. 9. The time variation of vertical displacement wg. Solid line: present formulation,
circles: Ibrahimbegovi¢ and Mamouri [8].

Fig. 10. Time variation of total energy of the system. In the inserted detail, a closer view of

the energy variation with time is shown for ¢ € [0.8, 1] s. Oscillations are clearly visible.
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Table 1

Present formul ation.

t=20.05s t=20.1s
FE DOF w(L)[m] Rel.Err. w(L)[m] Re.Err. Max.w(L)[m] Comp.Time[s]*
1FE; 15 0.02296 4.E-02 0.00397 4.E-01 0.02405 4.0
1FE; 18 0.02168 2.E-02 0.00790 1E-01 0.02400 4.7
1FE, 21 0.02212 1E-04 0.00708 1.E-02 0.02360 5.3
2FE; 30 0.02177 2.E-02 0.00687 2.E-02 0.02404 6.5
2FE; 36 0.02214 8.E-04 0.00697 5.E-03 0.02368 7.7
2FE, 42 0.02216 2.E-03 0.00700 4.E-04 0.02372 9.3
4 FE, 60 0.02208 2.E-03 0.00705 7.E-03 0.02382 115
4 FE; 72 0.02213 4.E-04 0.00700 3.E-04 0.02375 14.3
4 FE, 84 0.02212 5E-05 0.00700 9.E-05 0.02377 171
20FE; 360 0.02212 0.00700 0.02377 64.4

* Thetimeinterval [0, 0.1]s.
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Table 2

The strain-based formulation with the nested integration [22].

t=20.05s t=20.1s
FE DOF w(L)[m] Rel.Err. w(L)[m] Re.Err. Max.w(L)[m] Comp.Time[s]*
1FE, 9 0.00672 7.E-01 0.01688 1.E+00 0.01806 23.6
2 FEy 18 0.02208 2.E-03 0.00039 9.E-01 0.02256 41.8
3FEg 27 0.02209 1.E-03 0.00317 5.E-01 0.02338 60.9
4 FEy 36 0.02231 9.E-03 0.00506 3.E-01 0.02357 77.0
5 FEg 45 0.02177 2.E-02 0.00540 2E-01 0.02376 98.4
6 FEg 54 0.02181 1.E-02 0.00610 1.E-01 0.02385 115.8
8 FEg 72 0.02200 5.E-03 0.00684 2.E-02 0.02393 148.7
1I0FE, 90 0.02205 3.E-03 0.00699 3.E-05 0.02388 176.9
40FE, 360 0.02211 0.00699 0.02379 743.0

*Thetimeinterval [0, 0.1s
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