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Abstract 

The main problem in machine strength grading of wood lies in the grade determining parameters 

and machine grading parameters, which are all stochastic, and the correlation between them is of 

critical importance. Therefore it is difficult to reliably determine the grade of a particular piece. In 

order to understand the effectiveness and accuracy of machine grading one should perform a large 

number of experiments in which the non-destructive machine grading parameters as well as 

destructive grade determining parameters should be determined. So far we have had access to only 

limited number of such experiments. The basic idea of this paper is to use experimental data only 

for the determination of statistical parameters - mean vector and variance-covariance matrix - 

and afterwards use these statistical parameters in numerical simulation of machine grading. This 

numerical procedure gave some valuable data on the average values and the variability of grading 

results. As a result it is now easier to decide what sample size one should use in determining 

machine settings. 

 

Keywords: timber, machine grading, strength grading, numerical simulations, 

random number generation 
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Introduction 

Machine strength grading of sawn timber is based on correlations between grade 

determining properties like strength, stiffness and density, and measured physical 

properties. When new types of machines are taken into use, they are calibrated 

with timber sample representing the wood material for grading of which the 

machine will be used. Correlations between grade determining and measured 

properties depend on growth conditions, and this is taken into account by 

sampling the specimens from different growth regions.  

Another aspect is the statistical nature of timber strength: there is no method 

which could exactly predict the strength of a certain  piece of wood. However, 

there are known correlations between strength and measurable physical properties. 

The consequence is that thousands of specimens need to be tested to establish 

settings for grading machines, and after having done it, there is still an uncertainty 

about the strength distribution of produced strength graded timber as well as about 

the yield of timber to different grades. 

This paper analyses the statistical effects in the ideal situation when sampling has 

been done perfectly and all sub-samples belong to same population with normally 

distributed properties. We concern grading of timber, mainly taking into account 

the forthcoming European standard (prEN 14081-2, 2002). Based on earlier 

experiments, correlations between grade determining properties, strength, 

modulus of elasticity and density will be assumed, and the numerical simulation 

of the standard grading procedure will be applied to larger populations than can be 

afforded in testing. This approach was illustrated in an earlier paper (Ranta-

Maunus, 2002). Now we use a more advanced statistical procedure for the 

simulation of wood characteristics.   

This method is expected to be useful in the analysis of issues, such as: 

• sensitivity of grading result to the initial distributions of properties and to the 

effectiveness of the grading method    

• sensitivity of grading result to sample size and to statistical methods used 

when settings of machine are determined 

• yield to different grades when graded simultaneously to one or more grades 

• form of lower tail of strength distribution of different grades. 
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In order to reliably estimate the accuracy of machine grading, the sampling was 

repeated several times. Thus, the average values of yield in different grades and 

other parameters describing the characteristics of graded timber were evaluated. 

It was assumed that all parameters of ungraded population of timber are jointly 

normally distributed. This assumption was verified by statistical analysis of the 

population of actual experimental results. 

Numerical generation of sample 

It is assumed that grade determining parameters: strength f , modulus of elasticity 

E  and density ρ , and the observed grading parameter machE  are all normally 

distributed random variables. The characteristics of this random vector are 

presented by its mean value vector Ym  and its variance-covariance matrix YΣ  
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The mean value vector as well as variance-covariance matrix are estimated from a 

sample of real experimental results nkiyik ,,1,4,,1, KK == , where n is the sample 

size.  

Generating a sample of normally distributed random vector 

The basic idea behind generating a sample of dependent normally distributed 

random variables is to generate a sample of independent normally distributed 

random variables and then use a linear transformation to obtain a sample of 

dependent random variables (e.g. Devroy 1986). 

Linear transformation 

The linear transformation of random vector X , which is taken to be a set of 

independent random variables with zero mean and unit variances, is defined as 
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XHY  =  (4) 

where H  is transformation matrix, which deforms the coordinate system.  

Very important linear transformations are rotations which correspond to 

orthonormal transformation matrix H . 

The variance−covariance matrix of random vector X  is an identity matrix. 

Generating a random vector with a given 

variance-covariance matrix 

Let us assume that random vector Y  has zero mean values. In this case the 

variance−covariance matrix is defined as follows 

[ ]TE YYΣ  = , (5) 

where [ ].E  denotes the expected values. If we use Equ. (4) in Equ. (5), we obtain a 

useful relationship 

[ ] [ ] [ ] TTTTT EEE HXXHHXXHYYΣ       === , (6) 

Since the  variance−covariance matrix of X  is identity matrix [ ] IXX =   TE , Equ. 

(6) reduces to 
THHΣ  = , (7) 

We have to find such matrix H , for which Equ. (7) holds. Since the 

variance−covariance matrix is non-singular symmetric matrix, the problem can 

easily be solved by Cholesky decomposition (see e.g. Press et al. 1992). 

Generating procedure 

The generation of normally distributed random vector with known 

variance−covariance matrix is carried out by the following procedure: 

1. Perform a Cholesky decomposition of variance−covariance matrix Σ  of 

random vector X  (determination of H ). 

2. Generate a set of independent random variables with standardized normal 

distribution (generation of random vector X ). 

3. Perform a transformation which transforms independent variables X  into 

random vector Y  with known variance−covariance matrix (use of equation 

XHY = ). 
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4. Perform an additional transformation to obtain a random vector Z  with non-

zero mean values (use of equation [ ]ZYZ E+= ). 

Optimum grading 

When settings of a grading machine are determined according to EN 14081, both 

non-destructive testing by the use of grading machine, and destructive testing for 

the determination of the real grade determining properties are made for a 

representative sample. The first step in the analysis of the results is the 

determination of the “real” grade of each specimen based on the information of 

destructive testing: bending strength, modulus of elasticity and density.  This 

grading is made in such way that each specimen would be placed in as high grade 

as possible, and it is therefore called optimum grading. In our case a simultaneous 

grading to three grades was performed: C40, C30 and C18. The modified 

requirements for these grades according to prEN 14081 [1] are shown in Tab. 1. 

Table 1 
During the optimum grading determination we would like to grade as many pieces 

as possible to higher grades, with the following requirements (constraints): 

1. the sample (grade) 5 % percentile of the strength 05.0f  is higher than rf , 

2. the sample (grade) mean (average) of E  is higher than rE , 

3. the sample (grade) 5 % percentile of the density 05.0ρ  is higher than rρ , 

4. the sample 5 % percentile of the strength af 05.0  is higher than rf  for the sub-
sample obtained just by ranking according to the strength, 

5. the sample mean of aE  is higher than rE  for the sub-sample obtained just by 
grading according to the modulus of elasticity, and 

6. the sample 5 % percentile of the density a
05.0ρ  is higher than rρ  for the sub-

sample obtained just by ranking according to the density. 

A computer code (written in MATHEMATICA) was prepared for automatic 

determination of optimum grading. In addition to these requirements (constraints) 

the objective function S was defined as  
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It is our goal to find such settings of limits used in optimum grade determination 

that function S  reaches its minimum. This set of limits gives the optimum grading 

of the sample or population. 

The optimization procedure itself utilizes a relatively simple step-by-step bisection-

like method, in which the limits for any of grading determining parameters are 

decreased by a certain step-size if the difference (e.g. rff −05.0 ) is positive and 

increased if it is negative. The increasing is four times faster than the decreasing. 

When all three limits (for f , E  and ρ ) are as low as possible with the conditions 

fulfilled, the step-size is halved and the procedure is repeated. This simple method, 

which emulates the manual determination of optimal grading, gives very accurate 

limits for the grade determining parameters. Thus, the obtained grading is almost 

certainly the optimal one. 

Characteristic value determination 

The characteristic value has been determined by the use of order statistics. E.g., let 

us determine the 5 % percentile ky  from the sample nyi ,,1K=  where n  is sample 

size. The sample is sorted so that 1+≤ ii yy . The sample element jy  which satisfies 

the condition 

 nj 05.0= , (9) 

is the highest among the elements which are below the characteristic value. The 

notation  xj =  denotes the floor of the number x , i.e. the greatest integer less 

than or equal to x . The characteristic value is finally determined by the equation 

( )( )jjjk yyjnyy −−+= +105.0 , (10) 

which represents the linear interpolation between the two values embracing the 

characteristic value. If the sample size is lower than 2005.0/1 =  the equation (10) 

cannot be used. It is in this case difficult to reliably determine the characteristic 

value. An approximate formula can be used 

1 05.0 ynyk = .  
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Machine grading 

Machine grading is carried out according to the machine settings determined by 

comparison of machine readings and real grade determining parameters. Here, a 

procedure is introduced for automatic determination of settings according to prEN 

14081-2. The three limits for grades C40, C30 and C18 will be set in such way that 

the following conditions are fulfilled: 

1. the sample (grade) 5 % percentile of the strength 05.0f  is higher than rf , 

2. the sample (grade) mean (average) of E  is higher than rE , 

3. the sample (grade) 5 % percentile of the density 05.0ρ  is higher than rρ , 

4. none of the cells in the global cost matrix which indicate wrongly upgraded 
are grater than 0.2, 

5. the number of rejected pieces is grater or equal to 0.5 % of the total number of 
pieces in the sample. 

Similarly as for optimum grading determination, an automatic optimization 

procedure was developed in determining machine settings. There are several 

options for the objective function: different objective functions can be defined from 

global cost matrix or based on the number of pieces assigned to a particular grade. 

In our analysis objective function is a weighted sum of the number of pieces 
assigned to all grades: 

183040 39 ccc nnnS ++= . (13) 

We start from random choices of settings, and among the cases that fulfil the 

requirements the one with the highest objective function is chosen. From that point 

the limits of machine settings were lowered as much as possible so that the 

requirements are fulfilled and the objective function is maximized. This procedure 

usually gives relatively high yields in higher grades. 

Numerical example 

Based on the available data of 589 pieces of spruce with the depth of 150 mm, 

graded by a traditional bending type machine (Ranta-Maunus et al. 2001), the 
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descriptive statistics were determined. Descriptive statistics may be summarized in 

mean vector m  and variance-covariance matrix Σ  

 

 

 

 

Correlations between these variables are more evident in correlation matrices R : 
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Different sample sizes for machine settings were chosen: 125, 250, 500, 750, 1000, 

1250 and 2500. The determination of machine settings was repeated 100 times with 

independent samples. 

The results for mean machine setting parameters are shown in Tab. 2. The average 

values of machine settings do not differ much for different sample sizes from 250 

to 2500 pieces. In the case of the smallest sample of 125 pieces, there is a 

considerable probability (approx. 40 %) that would be impossible to grade any 

piece to the highest grade C40. Therefore, we conclude that the grading to the three 

grades simultaneously based on the smallest sample of 125 pieces is not adequately 

appropriate and is omitted in further analysis. 

Table 2 
The values of grading settings obtained by 100 repetitions were applied on the 

same population of 10000 pieces. The results are shown in Tab. 3. 

Table 3 
With this calculation the yields in individual classes are determined. The ratio 

between 5  % and 0.5  % percentile of strength is determined for all three classes. 
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In case there were not enough pieces in a particular grade, 0.5  % percentile has not 

been determined. 

The yield in C40 was approx. 36  % and in C30 between 50 and 55  % (compared 

to optimum grade yield of 62  % and 29  % in C40 and C30, respectively). The 

results improve slightly if the sample size is increased from 250 to 2500 (see Fig. 

1). 

Figure 1 
There is an evident improvement in COV of yield which decreases from above 

0.25 in the case of 250=n  to below 0.1 in the case of 1250=n  (see Fig. 2). This 

reduction in COV results in much narrower confidence interval for the cases when 

the machine grading was determined from only a few samples. 

Figure 2 
Other parameters do not change for different sample sizes, e.g. the ratio 05.0005.0 ff  

is virtually constant for all sample sizes. 

 

The influence of dependent sampling 

In real determination of machine settings we will not be able to have a large 

number of independent samples. In fact, we may have only a relatively large 

population (e.g. 1000=N ) of all available measurements from which we may 

draw several samples. These samples are obviously not independent, since the 

population from which we take samples is not infinite. 

In this numerical example we illustrate the effect of dependent sampling, i.e. 

sampling from a finite population. First we generate the population of 1000 pieces 

( 1000=N ). Then we randomly select samples from this population. In this case it 

does not make any sense to analyse larger samples, thus only samples of size 125, 

250, 500 and 750 were analysed. 

We may see that the effect from sampling from the population of 1000 is not very 

evident. We can see a slight reduction in variance which is presented in Tab. 4 and 

clearly illustrated in Fig. 3.  

Figure 3 
Table 4 
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However, it has to be emphasized that the result depends on the random sample of 

1000 pieces which in this case presents population. From Tab. 2 and 3 we can see 

that repeating of samples of 1000 pieces does not give equal results; e.g. COV of 

machine grading parameters are between 1.6 and 6.6 % for different grades and 

COV of yield is between 13.5 and 57.8 %. Thus, we can expect that if different 

population of 1000 is used in the analysis, one would get different results. 

Numerical results which confirm this expectation are shown in Tab. 5. Here the 

dependent sampling from three populations of 1000 was repeated 100 times. We 

can see that averages as well as standard deviations of machine settings depend on 

the particular population of 1000. The differences are much more evident than 

those observed in Tab. 4, where dependent sampling for different sample sizes 

were repeated 100 times but the same population of 1000 was used. 

Table 5 

Discussion 

In the numerical example we used prEN 14081-2 approach with the following 

deviation: 100 independent samples were generated separately for sample sizes 

from 125 to 2500, and used for the determination of settings, whereas in standard 

procedure much smaller number of dependent samples is used.  

First we analyse how the yield to different grades is influenced by the random 

factors, and how they can be counteracted by increasing the sample size. 

We observe that when the sample size is increased, the yield to higher grades 

increases slightly, whereas COV of yield decreases considerably (see Tab. 3 and 

Fig. 1 and 2). The results which are summarised in Tab. 6 and illustrated in Fig. 4 

indicate that when settings are determined by the use of “standard” sampling (4 

samples of 250 pieces), the machine gives on average 35.3% yield to C40, but it 

may give a yield from 26.2 to 44.4% within confidence limits of 95%. When four 

times larger sample is used for determining the settings, we obtain mean yield 

37.1% and confidence limits are from 32.2 to 42.0%.  

Figure 4 
Table 6 
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Also the form of strength distribution of different grades was studied. Based on 

the data from 150 mm wide spruce as above, we analysed the strength 

distributions of 10000 specimens when graded simultaneously to C40, C30 and 

C18 with settings based on mean values of 100 simulations of independent 

samples. We learned that the result is quite independent of the sample size, the 

average ratios between 0.5 % and 5% percentile of the strength  are 0.828, 0.753, 

and 0.605 in classes C40, C30, and C18, respectively. The variance of the ratio is 

in generally lower if larger samples were taken into account (see Fig. 5).  The 

form of strength distribution in lower tail area is illustrated in Fig. 6, where the 

5% percentile strength of each grade is denoted by 1 and cumulative distribution 

of the relative strength is shown. The curves are lognormal distributions which are 

fitted to simulated results in two points: f0.005 and f0.05. COV of the fitted 

lognormal distribution is indicated in Fig. 6, 0.2 for C40 and 0.6 for C18. We 

observed that C40 is generally much better material than lower grades.  

Figure 5 
Figure 6 
 

We have to keep in mind that this analysis is based on purely statistical effects and 

represents therefore an ideal case. When the growth region and range of sizes 

where the same strength model is used, are maximised, the effectiveness of grading 

is lower, and our numerical results are not directly valid. The power of numerical 

simulation is, however,  in number of simulations: we can study statistical 

phenomena with large sample sizes which cannot be afforded in destructive testing. 

Conclusions 

It was important to use actual experimental data to determine random vector 

characteristics (mean and variance-covariance matrix) used in sample generation. 

The data for spruce pieces with the depth of 150 mm showed quite high correlation 

between grade determining parameters and grading parameters. As a result the 

machine grading proved to be very successful. It is shown that the yield to higher 

grades increased noticeably with larger sample sizes. Even more important is the 

variance reduction for all the studied parameters: yield and percentile ratio for all 

grades. Numerical results indicate that the form of lower tail of strength 
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distribution in high grades is different from low grades: portion of specimens 

having strength considerably below the acceptance limit is less for C40 than for 

C18. 

Sampling from finite size population results in reducing the variances in machine 

settings, but this reduction is not due to better procedure but due to dependent 

sampling, which may lead to biased results.  
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Figure 1: Average yield in C40 and C30 for the generated samples of spruce with 150 mm depth 

 
Figure 2: Coefficient of variation for yield in C40 and C30 for the generated samples of spruce 

with 150 mm depth 

 
Figure 3: Coefficients of variation of machine settings for the cases of independent sampling and 

sampling from the finite population of 1000 pieces 

 
Figure 4: Yield in C40 and C30 – 95 % confidence intervals (4 repetitions of sampling) 

 
Figure 5: Ratio between 0.5% and 5% percentile of the strength 

 
Figure 6: Relative strength of timber graded simultaneously to C40, C30 and C18 
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Table 1: Modified requirements for grades C40, C30 and C18 

Grade rf  

[N/mm2] 
rE  

[N/mm2]
rρ  

[kg/m3] 

C40 40.0 13300 420 

C30 26.8 11400 380 

C18 16.1 8550 320 
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Tab. 2: Mean machine settings for different sample sizes 

Grades Sample 
size 
 

 
C40 C30 C18 

average 9944.4 8211.6 6767.4 250 
st. deviation 316.6 403.8 593.5 
average 9904.8 7886.7 6478.9 500  
st. deviation 205.5 260.2 263.1 
average 9884.9 7821.0 6467.9 750  
st. deviation 169.2 224.1 299.4 
average 9855.8 7754.5 6589.9 

1000  
st. deviation 137.2 207.5 270.3 

average 9892.1 7734.9 6463.0 1250  
st. deviation 115.5 194.2 235.9 
average 9857.6 7688.1 6478.6 2500 
st. deviation 96.0 140.4 210.6 
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Table 3: Grading results for the population of 10000 pieces, machine settings determined from 

samples of different sizes, samplings were repeated 100 times. 

Grades 

C40 C30 C18  
Yield 
[%] 05.0

005.0

f
f

 Yield 
[%] 05.0

005.0

f
f

 Yield 
[%] 05.0

005.0

f
f

 

Sample 
size 

Optimum 
grading 61.9 0.971 28.7 0.916 9.4 0.434 

average 35.3 0.828 48.6 0.768 13.6 0.624 
250 

st. deviation 9.3 0.0104 13.9 0.0179 7.9 0.0602 

average 35.9 0.828 50.8 0.763 11.0 0.616 
500 

st. deviation 6.1 0.0075 9.6 0.0188 6.4 0.0624 

average 36.7 0.828 54.4 0.748 8.1 0.603 
750 

st. deviation 5.4 0.0061 6.9 0.0170 3.1 0.0227 

average 37.6 0.827 54.4 0.743 7.0 0.583 
1000 

st. deviation 4.4 0.0057 5.7 0.0161 2.7 0.0733 

average 36.4 0.828 55.9 0.743 7.0 0.604 
1250 

st. deviation 3.6 0.0049 4.6 0.0151 2.4 0.0241 

average 37.5 0.828 55.4 0.740 6.3 0.600 
2500 

st. deviation 3.0 0.0045 3.9 0.0133 1.5 0.0225 
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Table 4: Mean machine settings parameters for different sample sizes 

Independent sampling 
Grades Sample 

size   
C40 C30 C18 

average 9944 8212 6767 
250 

st. deviation 317 404 594 

average 9905 7887 6479 
500 

st. deviation 206 260 263 

average 9885 7821 6468 
750 

st. deviation 169 224 299 
 

Sampling from finite population 
Grades Sample 

size   
C40 C30 C18 

average 9958 8225 6848 
250 

st. deviation 259 369 520 

average 9907 7929 6663 
500 

st. deviation 124 233 291 

average 9931 7866 6592 
750 

st. deviation 85 186 170 
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Table 5: Mean machine settings parameters for three different populations of 1000 pieces 

 

 Sampling from finite population 
Grades 

No. Sample 
size 

  C40 C30 C18 
average 9958 8223 6809 

1 250 
st. deviation 263 360 503 

average 9772 8459 7138 
2 250 

st. deviation 190 479 806 

average 10007 8232 6959 
3 250 

st. deviation 306 428 637 
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Table 6: Confidence intervals for yield to different strength classes [%]. It is assumed that 

independent sampling is repeated 4 times.  

Yield in grades [ ]%  Sample 
size C40 C30 C18 

41.96 9.335.3 ⋅±  41.96 14.148.6 ⋅± 41.96 7.96.31 ⋅±  
250 

26.2 44.4 34.8 62.4 5.9 21.3 

41.96 6.135.9 ⋅±  41.96 9.750.8 ⋅± 41.96 6.411.0 ⋅±
500 

30.0 41.8 41.3 60.3 4.7 17.3 

41.96 5.436.7 ⋅±  41.96 7.154.4 ⋅±  41.96 3.11.8 ⋅±  
750 

31.4 42.0 47.5 61.3 5.1 11.1 

41.96 5.037.1 ⋅±  41.96 7.33.52 ⋅±  41.96 4.88.4 ⋅±  
1000 

32.2 42.0 45.1 59.5 3.7 13.0 

41.966.336.4 ⋅±  41.96 4.59.55 ⋅±  41.964.20.7 ⋅±  
1250 

32.8 40.0 51.5 60.3 3.7 13.0 

41.96 3.037.5 ⋅±  41.96 3.955.4 ⋅±  41.96 1.66.4 ⋅±  
2500 

34.6 40.4 51.6 59.2 4.8 7.9 
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Figure 1: Average yield in C40 and C30 for the generated  

samples of spruce with 150 mm depth 
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Figure 2: Coefficient of variation for yield in C40 and C30 for the 

generated samples of spruce with 150 mm depth 
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Figure 3: Coefficients of variation of machine settings for the cases of independent 

sampling and sampling from the finite population of 1000 pieces 
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Figure 4: Yield in C40 and C30 – 95 % confidence intervals (4 repetitions of sampling) 
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Figure 5: Ratio between 0.5% and 5% percentile of the strength 
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Figure 6: Relative strength of timber graded simultaneously to C40, C30 and C18 

 


