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Abstract

Moving boundaries are associated with the time-dependent problems where
the momentary position of boundaries needs to be determined as a function
of time. The level set method has become an effective tool for tracking, mod-
elling and simulating the motion of free boundaries in fluid mechanics, com-
puter animation and image processing. This work extends our earlier work
on solving moving boundary problems with adaptive meshless methods. In
particular, the objective of this paper is to investigate numerical performance
the radial basis functions (RBFs) methods, with compactly supported basis
and with global basis, coupled with a wavelet node refinement technique and
a greedy trial space selection technique. Numerical simulations are provided
to verify the effectiveness and robustness of RBFs methods with different
adaptive techniques.

Key words: moving-boundary problems, wavelet method, level set method,
global RBFs, compactly supported RBFs, partial differential equations,
adaptive greedy algorithm

∗Corresponding author:

E-mail addresses: leopold.vrankar@gmail.com

Preprint submitted to Elsevier July 14, 2014



1. Introduction

One common feature of moving-boundary problems is the fact that the
location of the solid-liquid interface is not known in advance and has to be
determined during the analysis. Moving boundary problems can be consid-
ered as time-dependent problem where the position of the boundary has to
be determined as a function of time.

Various numerical methods are known to solve the moving-boundary
problems, e.g. front-tracking, front-fixing, and fixed-domain methods [1].
The Level Set Methods (LSM) have become an effective tool for simulating
the motion of free boundaries in fluid mechanics and other similar processes
[2–7]. The governing equation of LSM are usually solved by conventional
numerical methods e.g. the finite-difference methods and the finite-element
method [8, 9]. More and more attention has been given to the development
of meshless methods using radial basis functions (RBFs) for the numerical
solution of PDEs [10]. Recently, the RBF based meshless method has been
successfully used for the numerical solution of moving boundary problems
[11].

Adaptive techniques could be used to improve the efficiency of numerical
methods especially in LSM moving boundary problems in which the level
set function should be accurately captured only near the zero contour. The
computational resolution should be adaptively refined near the boundaries
and could be coarsened elsewhere. Any adaptive technique that is employed
in moving boundary problems should be fast enough as the boundary evolves
with time and the location of the zero contour has to be updated at certain
time steps. In recent years, wavelet methods have been used for signal pro-
cessing and mathematical analysis. In this paper, we propose a wavelet-based
adaptive scheme that utilizes the well-known RBFs (e.g. the multiquadrics
and the Wendland’s compactly supported basis) as the basis of the solution
space.

The objective of this paper is to improve the resolutions, hence accuracy,
of the meshless RBF method with some adaptive wavelet-greedy techniques
to construct a more efficient approach for moving boundary problems. Nu-
merical simulations are performed to verify the capability of the proposed
numerical scheme in the moving boundary problems.
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2. Governing equations and discretization

The level set method (LSM) is a numerical technique for tracking different
types of interfaces. The advantage of the LSM is that numerical computa-
tions involving curves and surfaces can be executed on fixed Cartesian grid.
Therefore, the parametrization of the object is not needed [12].

In two dimensions, the LSM represents a closed curve in the plane as
the zero value of the two-dimensional auxiliary function Φ(x, t), mapping
R2×R → R, where x is a position of the interface and t is a moment in time.
The closed curve is presented as:

Γ = {(x, t)| Φ(x, t) = 0}. (1)

The function Φ is termed a level set function and it is assumed to take positive
values inside the region delimited by the curve Γ and to take negative values
elsewhere [2, 3]. The level set function is defined as a signed distance function
from the interface. The moving interface at given time t is determined by
locating the set of Γ(t) for which Φ vanishes. The movement of the level set
function is described as

∂Φ

∂t
+ vT▽Φ = 0, Φ(x, 0) = Φ0(x), (2)

where Φ0(x) represents the initial position of the interface and vT = [ν1, ν2]
is the continuous field depending on position x.

Suppose the time derivative is discretized by an implicit scheme then we
have

Φn+1 − Φn

△t
+ ν1

∂Φn+1

∂x
+ ν2

∂Φn+1

∂y
= 0, (3)

where tk = k△t Φk = Φk(x) is the level set variable at time tk (k =
0, 1, 2, . . .). For spatial discretization, the function Φk is approximated by
a linear combination of radial basis functions:

Φk(x) =
N∑
j=1

αk
jφj(x) =

N∑
j=1

αk
jφ(||x− ξj||), (4)

where φj(x) := φ(||x−ξj||) is any radial basis function whose value depends
only on the distance between x and a fixed set of center pointsΞ = {ξ1, . . . , ξN}
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specifying the centers of RBFs and αj(tk) is the weight of the radial basis
function positioned at the jth center. Note that the exact positions of centers
Ξ are totally arbitrary. In this paper, the centers will be adaptively placed
so that their density is higher near the zero contour of Φ. On these centers,
two commonly used radial basis functions, namely the globally supported
multiquadrics φ(r) =

√
r2 + c2 and a Wendland’s compactly supported basis

[13] φ(r) = (1− r)8+(32r
3 + 25r2 + 8r + 1), will be used as trial functions.

Now, the initial set of weights αj(t0) is obtained from the given initial
conditions. Thereafter, if we impose collocation condition also at the set
of centers Ξ, it is straightforward to obtain the following linear system of
equations

N∑
j=1

(
φj(ξi)

△t
+ ν1

∂φj(ξi)

∂x
+ ν2

∂φj(ξi)

∂y

)
αk+1
j =

Φk(ξj)

△t
i = 1, ..., N. (5)

which allows us to update {αk
j} to {αk+1

j } (k = 0, 1, 2, . . .). The presented
material to this point is standard; readers can find out more implementation
details in [11].

3. Adaptive placement of “centers”

As mentioned, the zero contour of Φ is what we are interested in. The first
adaptive technique is wavelet-based technique that make our RBF centers
Ξ, which are also taken as the set of collocation points, with higher density
around the zero contour. Intuitively, more collocations or data means more
information that will allow us to better capture the details of the contour
curve.

In recent years, some attempts have been made to relate the RBFs to
wavelets. The concept of wavelet analysis was introduced in applied mathe-
matics by the end of the 1980s by Daubechies [14]. Since then interest has
grown rapidly in developing wavelet applications in engineering and science.
Recently, the wavelet analysis has been used in RBF collocation method
to adaptively refine mesh in regions with localized features [15–17]. The
advantage of the adaptive wavelet technique in comparison to the conven-
tional techniques is that the wavelet coefficients which are used to detect re-
gions with localized features are simply computed by the fast discrete wavelet
transform. Therefore, the wavelet based adaptive technique is very fast which
is of great importance in time dependent problems in which the mesh should
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be repeatedly refined at certain time steps. In contrast, other automatic
adaptive techniques are usually based upon the posterior error indicator in
which the computation of the posterior indicator often dramatically decreases
calculation efficiency.

A short review of the multi-resolution wavelet analysis (MRMA) is given
in [15–17]: the mathematical foundation of the adaptive wavelet algorithm is
multi-resolution wavelet analysis. The MRWA projects a complicated func-
tion into a nested sequence of approximation subspaces {Vj+1} ,Vj ⊂ Vj+1

and establishes a set of scaling function coefficients ajk and a set of wavelet
coefficients djk, structured over different levels of resolution. Each of sub-
spaces can be decomposed into an approximation space {Vj} and its orthog-
onal complement detail space {Wj}. The space L2 can be expanded as an
approximation space plus a sum of detail spaces, i.e. L2 = Vj=j0+

∑
j=j0Wj.

The bases of approximation and detail subspaces are constructed with scaled
and translated versions of functions ϕj,k and ψj,k as respectively

{Vj} = span{ϕj,k = 2j/2ϕ(2jx− k)} (6)

{Wj} = span{ψj,k = 2j/2ψ(2jx− k)}, (7)

Using Vj ⊂ Vj+1 and Wj ⊂ Vj+1 we obtain

ϕ(x) =
∑
k

hk ϕ(2x− k) (8)

ψ(x) =
∑
k

gk ϕ(2x− k). (9)

The sequences are respectively low-pass and high-pass filters. The wavelet
decomposition of f(x) into fj ∈ Vj and gj ∈ Wj is

f(x) =
∑
k

γj,k ϕj0,k +
∑
j=j0

∑
k

ψj,k. (10)

An important point of the wavelet decomposition is the fast discrete wavelet
transform (DWT) [18] which provides a simple method of transforming data
from one level of resolution j to the coarser level of resolution j − 1

γj−1,k =
∑
l

h2k−l γj,l (11)
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κj−1,k =
∑
l

g2k−l κj,l. (12)

The DWT avoids the unpleasant calculation of the coefficients, γ and κ,
which allows the wavelet coefficients to be efficiently calculated using fast nu-
merical convolutions. The scaling function coefficients γj,k present a smoothed
version of the function at the current scale, but the wavelet coefficients κj,k
present the irregular behaviour of the function (e.g. between the current
scale and the next finer scale). At the corresponding level of resolution, the
wavelet coefficients are a measurement of the approximation accuracy. The
basic idea of the wavelet scheme is to present a function with fewer degrees
of freedom while still obtaining an accurate approximation. At any level, the
function under analysis is written as a sum

f(x) = f 1(x) + f 2(x), (13)

where

f 1(x) =
∑
k

γj0,k ϕj0,k +
∑
j=j0

∑
k

κj,k ψj,k for κj,k ≥ η

f 2(x) =
∑
j=j0

∑
k

κj,k ψj,k for κj,k < η. (14)

The scaling and wavelet coefficients could be obtained from equations (15)

γj,k = (f, ϕj,k),

κj,k = (f, ψj,k). (15)

For a smooth function f(x), the error is bounded by a prescribed threshold
Cη as |f(x)−f 1(x)| ≤ Cη, where the parameter C depends on f(x). Further
details about the RBF adaptive wavelet method are given in [15, 16]. The
extension of the adaptive wavelet method over irregular domain, that is not
necessary for our work here, could be found in [17].

The following schematic RBF centers distribution aims to provide readers
some insights about the situation we are dealing with (Fig. 1).

It is well known that performance of global RBFs method is very sensitive
to both the distribution of points and the selection of RBF shape parameter.
In the coming section, we will overview an adaptive technique that allows
the global RBFs method to work, for any shape parameter, by selecting a
proper trial or solution sub-space.

6



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
col

=852,   N
cen

=177

0.2 0.4 0.6 0.8 1

t=2

Figure 1: A schematic example of (Left) non-uniform node distribution resulted from the
wavelet adaptive technique and (right) selected RBF centers by the greedy algorithm.

4. Adaptive-globally versus compactly supported RBFs

As seen in Fig. 1, the RBF centers returned from adaptive technique we
described just now are highly non-uniform. Such non-unform centers used
to bring a lot of difficulties to the global RBF method in which users must
determine an appropriate shape parameter. Our answer to this problem is
to introduce another level of adaptivity by coupling an adaptive greedy algo-
rithm and wavelet analysis techniques. The proposed method which includes
the greedy and wavelet adaptive algorithm is described in this section. An-
other solution to the non-unform centers is to employ local basis instead of
global. Although the shape parameter of CSRBF is still arbitrary, it is com-
monly accepted fact that this is much less of a problem in comparison to the
problem seen in its global counterpart. The numerical methods used in this
paper were utilized for the solution of LSM problems either with adaptive
MQ RBF or with the CSRBFs. Various examples will then be provided to
compare the performances of the choices of basis.

The numerical stability of the global RBF method highly depends on
the optimal selection of its centers and the corresponding shape parameters.
Intuitively, such optimal locations will depend on many factors: the PDE
and its domain, the RBF basis used, the computational precisions, some
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user defined parameters, and so on. This makes finding optimal RBF centers
and the corresponding shape parameters a very difficult task.

The adaptive greedy algorithm in which the system of equations are par-
tially solved by a series of sub-optimal adaptive greedy algorithms could be
used for the selection of nearly optimal subset of RBF centers [19–21]. The
idea is to set theN×N matrix system by chosingN RBF centers andN collo-
cation points. Next, the adaptive algorithm is employed to select an optimal
subset of Np RBF centers. The final approximation is given by the least-
squares solution resulting in selection of Np RBF centers and N collocation
points. Some convergence results are given in [22] and recent applications
of the method can be found in [23–26]. The selected row and columns are
added to the previously selected matrix and the new approximation αk+1 is
obtained by solving the system associated with k + 1 collocation points and
k + 1 RBF centers.

Be reminded that the adaptive wavelet techniques produce a dense mesh
near the boundaries of moving boundary problems while keeps a relatively
coarse mesh elsewhere. The very fine mesh near the boundaries will result
in a highly ill conditioned system of equations in which the stable solution
is an important issue. On the other side the greedy algorithm starts from
finely distributed set of RBF centers and selects a small and nearly optimal
subset of it. The greedy adaptive method guaranties that the condition
number of resulted system of equations is lower than a prescribed value that
ensures stable solution of the system. The first step of adaptive wavelet-
greedy technique is to produce a finely distributed RBF centers near the
boundaries using the adaptive wavelet procedure described in section 3. The
next step is to utilize the adaptive greedy technique, described in section 4,
to select nearly optimal RBF centers from the adaptive mesh produced in
previous step. The overall procedure of updated RBF collocation method
with adaptive wavelet-greedy technique is summarized in Algorithm 1.

5. Numerical results

In the simulations we used the MQ RBF basis φ(r) =
√
r2 + c2 with shape

parameter c and compactly supported RBF spline φ(r) = (1−r)m+p(r), where
p(r) is a polynomial of the Wendland [13] compactly supported (CSRBF)
spline:

(1− r)m+ =

{
p(r), if 0 ≤ r < 1,
0, if r ≥ 1.
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Algorithm 1 Wavelet node-refinement with greedy trial space selction

Input data:
Type of RBFs (MQs or CSRBFs, Section 2)
Shape parameter for MQ RBF (Section 2)
Pointer to the greedy (wavelet) method
Initial and boundary conditions
Type of velocity fields (see examples in Section 5)

Initialization:
Generate the base collocation computational grid (e.g. 25× 25)
Define the zero contour (as circular bubble, see examples in Section 5)

if the pointer to wavelet method > 0 then
Apply the adaptive wavelet method

end if
Iteration:
while t ≤ Tfinal do
Compute the new zero contour (Section 2)
if the pointer to the wavelet (greedy) method > 0 then
Apply the wavelet (greedy) procedure (Section 3 and Section 4)

end if
if the initial contour area < the real contour area then
Apply the reinitialization [12]

end if
Solve the problem and calculate the unknown coefficients (Section 2)
Setting time t := t+∆t

end while
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Figure 2: Shape of the interface calculated with the wavelet adaptive CSRBFs method.

5.1. Oriented flow

The first example is a translation of circular interface in oriented flow.
The circular bubble of radius r = 0.15, initially centered at (0.3, 0.3), moves
by the orientated flow in a computational domain of size 1 × 1 with the
velocity field (u, v) defined as follows:

u = 0.2(x+ 0.5), (16)

v = 0.2(y + 0.5). (17)

Results obtained with the wavelet adaptive RBFs method and greedy
algorithm’s (see Fig. 1 and Fig. 2) are compared with results obtained in
[11]. The results are comparable.

In Fig. 3, the normalized errors [11] of the area as a function of time
are presented. The error of the area is calculated for the wavelet adaptive
CSRBFs method and the MQ RBFs method and greedy algorithm combina-
tion.

5.2. Bubble in a single-vortex flow field

The following examples were also presented in article [27]. First, we
consider a circular bubble of radius r = 0.15, initially centered at (0.5, 0.75),
advecting in a steady, non-uniform vorticity field in a computational domain
of size 1× 1 with the velocity field (u, v) defined as follows:
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Figure 3: Error of the area at different points in time. Time step is 0.01.

u = − sin2(πx) sin(2πy), (18)

v = sin2(πy) sin(2πx). (19)

This velocity field possesses vortical flows which deform and possibly tear
any interface carried with the flow. In Fig. 4, we can see that the resulting
vortex field spins fluid elements, stretching the bubble into long and thin
body which spirals around the center of the domain.

Second, we consider a circular bubble of radius r = 0.25, initially centered
at (0.5, 0.75) in a computational domain of size 1× 1 with the velocity field
(u, v) defined as follows:

u = sin(4π(x+ 1/2)) sin(4π(y + 1/2)), (20)

v = cos(4π(x+ 1/2)) cos(4π(y + 1/2)). (21)

The velocity field has the ability to force the bubble to undergo extreme
topological changes. The results are presented in Fig. 5.

5.3. Bubble in an advection flow field

Many engineering processes include phase transitions. Computer simu-
lations provide a useful tool for studying such transitions. We consider a
circular bubble of radius r = 0.15, initially centered at (0.4, 0.56), moved by

11
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Figure 4: Shape of the bubble in a single-vortex flow field.
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Figure 5: Shape of the bubble in an extreme situation.
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a shear flow in a computational domain of size 1 × 1 with the velocity field
(u, v) defined as follows:

u = sin(2πx) sin(2πy), (22)

v = − cos(2πy) sin(2πx). (23)

The function Φ is also evaluated on a 49 × 49 grid in order to find the zero
contours. The results are presented in Fig. 6.
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6. Conclusions

This paper outlines the continuation of work done on an alternative ap-
proach to the conventional level set methods for solving two-dimensional
moving-boundary problems. In this case, the wavelet adaptive RBFs method
was added to the earlier approach, which was a combination of MQ RBFs
and the adaptive greedy algorithm.

More examples are presented, in particular oriented flow, bubble in a
single-vortex flow field and bubble in a advection flow field.

In the conventional level set methods, the level set equation is solved to
evolve the interface using a capturing Eulerian approach. The solution pro-
cedure requires the appropriate choice of the upwind schemes, reinitializa-
tion algorithms and extension velocity methods, which may require excessive
amount of computational efforts. In our case, we did some reinitialization in
some time steps but the number of required reinitialization has decreased af-
ter applying the proposed adaptive techniques. Actually, our examples show
that the solutions are much more stable (less artifacts appear in the corners)
if the new method (LSM + CSRBF + adaptive wavelet) is employed. The
time step was 0.01. We can also conclude that there is instability as the time
becomes larger, but the simulations have shown that the instability is less
pronounced if the adaptive wavelet CSRBF method was used. This has very
beneficial influence on the numerical effectiveness of the method.

Fig. 2 and Fig. 4 show that we can expect more accurate results if
the wavelet adaptive RBF method is used. We can clearly emphasize that
the greedy-adaptive wavelet method is much more suitable for complicated
problems (see Fig. 5 and Fig. 6). In the future work, in the case of greedy
algorithms, we are going to check the possible influence of row-weighting
for non-uniform grids, but in the case of the CSRBF adaptive method, it
is necessary to check if it is possible to implement the method without the
adaptive support. We can also conclude that the greedy is developed to
work on well-spread but scattered data. Our non-uniform centers requires
weighting of some sort.
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19


