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ABSTRACT 

This paper presents an effective approach to shape optimal design of statically loaded elastic shell-

like structures. The shape parametrization is based on a design element technique. The chosen 

design element is a rational Bézier body, enhanced with a smoothly varying scalar field. A body-

like design element makes possible to unify the shape optimization of both pure shells and truss-

stiffened shell structures. The scalar field of the design element is obtained by attaching to each 

control point a scalar quantity, which is an add-on to the position and weight of the control point. 

This scalar field is linked to the shell thickness distribution, which can be optimized simultaneously 

with the shape of the shell. For linear and non-linear analysis of shell structures, a reliable 4-node 

shell finite element formulation is utilized. The presented optimization approach assumes the 

employment of a gradient-based optimization algorithm and the use of the discrete method of direct 

differentiation to perform the sensitivity analysis. Four numerical examples of shell and truss-

stiffened shell optimization are presented in detail to illustrate the performance of the proposed 

approach. 

 

KEYWORDS: shape, optimization, truss-stiffened shell, design element, Bézier body 

 

 

1. INTRODUCTION 

In order to find effective shapes of shell-like structures many ideas have been investigated and 

proposed. They may be roughly summarized into three main streams: the principle of a hanging 

model, the soap film analogy, and structural optimization. The approaches of the first two groups 

primarily use experimental tests, although they may also use numerical simulations (see e.g. 

references in [5]). The approaches based on structural optimization, however, are probably the most 

general and the most promising ones. 
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 During the last several years different techniques for shape optimal design of shells, which 

can be classified under structural optimization, have been proposed. Maute and Ramm [22] 

combined shape optimization (in order to get smooth contours of the shell) with material topology 

optimization (in order to get the basic layout). Ansola et al. [2] presented an integrated approach to 

shape and topology optimization of shells in order to minimize the compliance of the structure. 

Lindbay and Santos [21] focused their work on shape optimization of shells by employing the shape 

parametrization of an existing CAD system (the aim was to take full advantage of geometric 

modeling and automatic meshing capabilities of the CAD system). Ohsaki et al. [25] proposed to 

seek for optimal shapes taking into account the fairness metrics of curves and surfaces, optionally in 

combination with mechanical quantities such as compliance. Lagaros et al. [19] addressed the 

evolution strategy based discrete optimization of single-layered shells with stiffening beams: the 

design variables were related to some shape parameters of the structure as well as to the sizing 

parameters and topology of the stiffeners. Gates and Accorsi [11] performed shape optimization by 

successively selecting the most appropriate edge of the shell and moving it by employing non-linear 

optimization combined with a commercial analysis code. Imam [13] presented an approach to shape 

optimization of umbrella-shaped concrete shells. For further interesting discussions and examples 

related to the optimal shape design of shells the reader may also refer to [1,4,6,9,12,17,20,26,27]. 

 It seems that the above mentioned paper of Lagaros et al. is one of the few works addressing 

optimization of shell structures with stiffeners. To the authors’ knowledge there are no papers 

addressing shape optimization of truss-stiffened shells with variable thickness. This makes the 

present work different from the related published works. 

The shape optimization approach proposed in this paper is based on a design element 

technique. As a design element a rational Bézier body is chosen. The shell middle surface is 

assumed to occupy a particular parametric surface of the design element, while the rest of the 

element may be occupied by an arbitrary truss structure. By the shape variation of the design 

element the shapes of the shell part and the truss part of the structure are varied simultaneously and 

consistently. 

The thickness of the shell may also be variable. This is achieved by enhancing the design 

element with a smooth scalar field and by further linking it with the shell thickness. The scalar field 

is introduced by attaching an additional scalar quantity (called value of the control point) to each 

control point of the Bézier body and by employing the interpolation functions of the design element. 

A similar idea was also used by Ohsaki et al. [24], where the cross-sectional areas of truss elements 

were linked to Bézier curves. 

By adopting the above approach, the shape of variable thickness shell structures with or 

without truss stiffeners can be optimized in a unified and relatively simple way. The stiffening truss 
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structure may be of any kind including double and multi-layered trusses, and may lie on one or both 

sides of the shell. The design variables may be related to the positions, weights and values of the 

design element control points as well as to the cross-sections of truss finite elements. The 

optimization is assumed to be performed by a gradient-based optimization algorithm and the 

sensitivity analysis is done by the discrete approach of direct differentiation. 

 The outline of the paper is as follows. Section 2 briefly presents the finite elements used and 

their geometrical data varied during the shape optimization. Section 3 presents the shape 

parameterization concept and the enhanced design element. In Section 4 the optimal design problem 

is formulated and its solution procedure is discussed briefly. Finally, Section 5 presents four 

numerical examples in full detail. 

2. FINITE ELEMENTS USED IN OPTIMIZATION PROCESS 

Non-linear truss and non-linear shell finite elements that may undergo large displacements and 

large rotations (but small strains) are used in the optimization process. The truss element is a 

standard 2-node element with a constant cross-section. Its internal force vector eF , the loading 

vector eR , and the tangential stiffness matrix eK  can be derived in closed forms. From the 

geometrical point of view, the element is fully specified by position of its nodes 2,1, =nnr , and 

the area of cross-section A  (see Figure 1a). 

 
Figure 1. Geometrical quantities of truss and shell finite element 

 The 4-node shell finite element is based on an ANS (assumed natural strain) concept of Bathe 

and Dvorkin [3]; see also [8], [30]. Finite rotations are parametrized by a constrained rotation 

vector, e.g. [7], which is consistent with the standard incremental solution scheme for non-linear 

problems. Since it maintains additive iterative rotational updates it is also very suitable for 

optimization problems [12]. The usual 4-node ANS shell element formulation is modified to suit the 

analysis of shells with variable thickness. According to the isoparametric concept, the position 

vector of a shell middle surface point r , the normal vector to the middle surface n  and the shell 

thickness t  are given (for the undeformed configuration) as 

rn 

A 

(a) (b) 

rn 

nn 

tn 
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where 
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are usual bi-linear interpolation functions, and ( ) ( ) ( ) ( ) ( ){ }1,1,1,1,1,1,1,1, −−−−∈nn ηξ . The geometry 

of the element is fully specified by Eqs. (1)-(2), and by the position of its nodes nr , nodal normals 

nn  and nodal thicknesses nt , 4,3,2,1=n  (see Figure 1b). These quantities are needed for 

computation of the internal force vector eF , the loading vector eR  and the tangential stiffness 

matrix eK  of the element, which should be remembered when performing the sensitivity analysis. 

 In this work it is assumed that cross-section A  of the truss element is linked to the design 

variables in a usual way (as in conventional sizing optimization). On the other hand, nodal positions 

of both truss and shell elements nr , nodal normals nn , and nodal thicknesses nt  of the shell 

element, are all linked to the design variables via the design element. 

The internal and the external force vectors 
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of the non-linear shell finite element can be written as (see e.g. [8], [30]) 
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The matrices s
i

b
i

m
i BBB ~,~,~  are obtained from variation (linearization) of membrane, bending and 

transverse shear strains, respectively, while the matrices sbm CCC ,,  define the linear elastic 

constitutive relations for shells. Vector nP~  collects shell area loading, which is in this paper 

assumed as conservative, 
ηξ ∂

∂
×

∂
∂

=
rrj~  is the Jacobian of the isoparametric transformation from the 

undeformed finite element space to the bi-unit square [ ] [ ]1,11,1 −×−=Ωe , and lu  is a vector of 

displacements/rotations at node l. Note that the B~  matrices, nP~  and j~  are functions of position 

vector r , and that the B~  and C  matrices are functions of thickness t . Vector nP~  also depends on t  

if self-weight is taken into account. 
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3. SHAPE PARAMETRIZATION BY USING AN ENHANCED DESIGN ELEMENT 

3.1 Design element 

In order to parametrize the shape of the structure, the design element technique is employed with a 

rational Bézier body as a chosen design element (DE). The Bézier body exhibits good shape 

flexibility, automatic prevention of excessive shape oscillations and possible representation of 

classical shapes. A body-like DE is preferred over a surface-like DE in order to unify shape 

optimization of both shell structures (i.e. surface-like structures) and truss-stiffened shell structures 

(i.e. body-like structures) (see Figure  2). 

 
Figure 2. A body-like design element 

 The Bézier body is defined by a topologically rectangular scheme of 321 NNN ××  control 

points ijkP . Conventionally, the attributes of each control point ijkP  are its position ijkq  and the 

corresponding weight ijkw . In this work, however, an additional scalar quantity ijkh , called the 

value of the control point ijkP , is attached to each control point (see Figure 3). By adopting such an 

arrangement, the shape of the Bézier body is still defined in the conventional way (by the control 

point positions and by weights). The above mentioned values of the control points are used to 

introduce a smooth scalar field, defined over the whole Bézier body, which can be linked for 

example to the shell thickness. 

 The DE shape depends on the design variables - a set of independent parameters Nbbb ,,, 21 K  

assembled in vector NR∈b . This is achieved by assuming that ijkq , ijkw  and ijkh  are not 

necessarily constants, but may depend on b . Thus, one has ( )bqq ijkijk = , ( )bijkijk ww = , and 

( )bijkijk hh = . 

 Remark. In a general purpose code, there are several possibilities for implementing these 

dependencies. In this work an arithmetic expression parser is integrated into the code. In this way 

any component of ijkq , ijkw  or ijkh  may be defined by an arithmetic expression in terms of 

Nbbb ,,, 21 K  by using the FORTRAN syntax. The same parser is also responsible for the calculation 

Shell FE 

Design 
element 

Truss FE 
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of the design derivatives of these quantities. Thus, one has a possibility to conveniently define 

design dependent quantities ijkq , ijkw , ijkh  and to easily compute the design derivatives bq dd ijk , 

bddwijk  and bddhijk  needed in the sensitivity analysis. 

 
Figure 3. Control point ijkP , its position ijkq , weight ijkw  and value ijkh  

 A Bézier body has a local curvilinear coordinate system with its coordinates 1s , 2s  and 3s  

running from 0 to 1 (see Figure 3). Thus, vector [ ]Tsss 321=s  defines a point in the DE 

coordinate system. For any point s  there is an image r  in the real 3-D space 
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and a corresponding scalar quantity t  
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where ( )1
11 sBB N

i
N
i = , ( )2

22 sBB N
j

N
j =  and ( )3

33 sBB N
k

N
k =  are the Bernstein´s blending polynomials of 

the orders of 11 −N , 12 −N  and 13 −N , respectively, [10].  

3.2 Finite element attachment to the design element 

When using body-like DE for parametrization of a shell structure, it is convenient that the shell 

middle surface coincides with some parametric surface of the DE. Without loss of generality, it is 

assumed in what follows that the shell middle surface is defined as css 33 =  surface of the DE, 
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where cs3  is any fixed value between 0 and 1. It follows from Eq. (5) that a point on the shell 

middle surface can be expressed as ( )bsrr ,c= , where [ ]Tcc sss 321=s . By using Eq. (6), a 

smoothly varying thickness of the shell is given as ( )bs ,ctt = . And the shell director vector field n , 

being normal to the middle surface, is given as 

 ( ) ( ) ( ) ( ) ( )
2121

,,,,,
ssss
cccc

c ∂
∂

×
∂

∂
⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
×

∂
∂

==
bsrbsrbsrbsrbsnn  (7) 

 By the proposed design element technique, the position of a particular finite element node is 

fully specified by its position s  in the parametric space (see [16]). Once the position s  of the shell 

finite element (SFE) node is known, Eq. (5) is used to calculate its position r  in the real 3-D space 

for any given values of the design variables b . By using Eq. (6) the thickness of the shell at the 

node under consideration can be calculated, while Eq. (7) is used to calculate the corresponding 

nodal shell director. 

 Assuming that the DE data ijkq , ijkw  and ijkh  are known, all the geometrical data for the SFE 

can be obtained from the parametric positions of its nodes. In other words, the geometrical data for 

the SFE are fully specified by four points { }4,3,2,1, =ncns . These points can be regarded as the pre-

images of the SFE nodal positions in the real 3-D space. The middle surface position r , the 

thickness t  and the normal n  at any point of the SFE can now be derived as shown in Figure 4. 

 
Figure 4. Geometrical data retrieval for the SFE 

 It should be noted that the DE is used only to obtain the nodal geometrical data ( )bsrr ,cnn = , 

( )bs ,cnn tt = , ( )bsnn ,cnn =  of the SFE and the corresponding design derivatives 
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needed for the sensitivity analysis. Once the nodal data are known, the geometrical field data, 

needed for the integration over the element, are obtained by employing the SFE shape functions. 

DE input data 
ijkijkijk hw ,,q  

SFE input data 
cns  

Current design 
b 

DE code SFE code 

SFE nodal data 
nnn t nr ,, , br dd n ,

bnb ddddt nn ,  

SFE field data 
nr ,, t , br dd , 

bnb ddddt ,  
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Thus, the SFE middle surface, the director and the thickness are given by Eqs. (1) while the 

derivatives of the same quantities with respect to b are 

 ∑
=

=
4

1n

n
n d

dN
d
d

b
r

b
r ,     ∑

=

=
4

1n

n
n d

dtN
d
dt

bb
,     ∑

=

=
4

1n

n
n d

dN
d
d

b
n

b
n  (9) 

Note that by adopting the above procedure the shape of the shell (and the corresponding finite 

element mesh) is actually parametrized in terms of the design variables b . 

 If the shell is stiffened by a truss structure, a consistent shape variation of both the shell and 

the truss structure has to be assured. For this purpose the truss elements should also be mapped to 

the real 3-D space from the DE domain. In other words, the position of a truss finite element should 

also be specified by two points { }2,1, =nns . Of course, the parametric coordinate 3s  of the node 

may now have any value between 0 and 1, meaning that the truss finite element may me positioned 

anywhere within the DE. The actual nodal positions 2,1, =nnr  of the truss element and the 

corresponding design derivatives 2,1, =ndd n br  are obtained in the same manner as for the shell 

element. 

3.3 Combining design elements 

To model a structure, one or more design elements can be used. When several design elements are 

utilized, some considerations, related to the continuity along the common boundary of two adjacent 

design elements, are needed. Positional or 0C  continuity is required practically always; on the other 

hand, also slope or 1C  continuity is often a desired feature. 

 Generally, the positional and slope continuity may be relatively easily obtained only in certain 

situations. Let the symbols α  and β  denote two adjacent design elements that need to have a 

common boundary surface. Since α  and β  are Bézier bodies, their boundary surfaces consist of 6 

Bézier patches and the 4 boundary curves of each of these patches are Bézier curves [10]. In order 

to obtain continuity in a relatively simple manner, it is required that a boundary patch as a whole is 

shared by both design elements α  and β . Thus, it should be avoided to trying to match a boundary 

patch of α  with only a part of a boundary patch of β . An exception to this guideline is a situation 

where one of the design elements is degenerated to a surface. In this case one whole boundary 

(edge) curve should be shared by α  and β . Again, it should be avoided to trying to match one 

boundary curve of α  with some arbitrary parametric curve on the surface of β . 

Taking into account the above restrictions, positional continuity can be obtained in a very 

simple way. The only requirement is that the matching boundary patches share the same set of 

control points. Of course, this also means that the number of control points in both directions of the 
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matching patches has to be the same, i.e. the patches must match topologically. 

 
Figure 5. Continuity on topologically matching boundary patches 

Figure 5a illustrates a situation where a 133 ××  design element α  is combined with a 132 ××  

design element β . Positional continuity is obtained by the control points A, B and C which are the 

same for the common boundary curve. In a more general situation, let α  and β  be two adjacent 

design elements with 321 ααα NNN ××  and 321 βββ NNN ××  control points, respectively. Let the 

desired common patch be, for example, the 11 =αs  boundary patch of α  and the 01 =βs  boundary 

patch of β . The symbols α
is  and β

is  are used to denote the local coordinates of the design elements 

α  and β . In order to achieve positional continuity in a relative simple manner, one should define 
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Similarly, positional continuity requirements may be obtained for any possible combination of 

boundary patches of α  and β . 

 For slope continuity, additional constraints on control point positions have to be introduced. 

These constraints require that each common control point lies on a straight line, defined by its both 

neighboring control points (in the parametric direction that crosses the design element boundaries). 

In the example situation discussed above, the additional constraints assuring slope continuity can be 

written as follows 
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where ξ  is an arbitrary value chosen so that 10 << ξ . Figure 5b illustrates a situation where 

positional and slope continuity is assured by proper positioning of adequate control points. The 

common control points A, B and C lie on the straight (dotted) lines defined by the neighboring 

control points A1 through C2. 
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 It should be noted that the above constraints for positional and slope continuity can simply be 

introduced implicitly by an adequate definition of the design elements and control points. Thus, for 

positional continuity the adjacent design elements only need to share the same set of control points 

that define the common patch. For slope continuity, these common control points need to be 

expressed in terms of their neighbors. Additional explicit constraints that would increase the size of 

the problem are therefore not needed. 

 In certain situations it may be of benefit to combine two design elements whose adjacent 

patches do not match topologically (see Figure 6). In general, assuring slope continuity in such a 

case is rather cumbersome. However, positional continuity might be obtained relatively easily, if the 

common patch is (and also remains during the optimization) a quadrilateral, i.e. a plane surface with 

straight edges. In addition, the control points on the common surface have to be distributed 

uniformly (see Figure 6a) in order to assure that the FE mesh in both design elements may be 

matched easily on the common surface (see Figure 6b). 

 
Figure 6. Positional continuity on topologically mismatching boundary patches 

 Quadrilateral boundary patch and uniform distribution can be achieved simply by defining all 

the involved control points in terms of the 4 corner control points. In the example situation 

discussed above, this can be expressed as 
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where 

 ( ) ( )
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32
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1
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1
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ζη NkNj
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Similar relations have to be used if some other combination of boundary patches needs to be 

matched. Figure 7a illustrates a situation where positional continuity is assured on a common patch 

sα1 sα2 α 

β 

sβ1 

sβ2 (a) (b) 

FE mesh 

FE node 
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between the 221 ××αN  design element α  and the 331 ××βN  design element β .  

 
Figure 7. Positional continuity for body-body and surface-body situation 

 Finally, Figure 7b illustrates a situation where a boundary curve of a degenerated (surface-

like) design element is combined with a boundary (edge) curve of a body-like design element. In 

such cases positional continuity can easily be obtained by using the same control points for the 

matching curves. In addition, if the matching curves also match topologically, slope continuity can 

be obtained easily by following the guidelines already discussed for the body-body situation. 

4. FORMULATION AND SOLUTION OF THE OPTIMAL DESIGN PROBLEM 

An optimization problem of a statically loaded structure can usually be written in the following 

form 

 0min f  (14) 

subject to constraints 

 
Nibbb

Mif
U
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L
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Here ( )ub,00 ff =  denotes the objective function, which is often defined as the volume, 

compliance, or strain energy of the structure. The constrained quantities ( )ub,ii ff =  are usually 

nodal displacements and rotations, element strains and stresses, geometrical constraints and 

technological limitations. The symbols L
ib  and U

ib  denote the lower and the upper limits of the 

design variables, while u  is a vector of structural response variables – usually nodal displacements 

and rotations. 

 It should be emphasized that in problem (14)-(15) the design variables shall be considered as 

independent and the response variables as dependent variables. In other words, the dependency 

( )buu =  is established implicitly by the structural equilibrium equation 

 0RF =−  (16) 

(a) (b) 

α 

β 

CP of α 
CP of β 

β 

α 
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where F  and R  denote the vectors of structural internal and external forces. 

 Structural vectors F  and R  are obtained by assembling individual finite element vectors eF  

and eR . For the shell finite element these vectors are obtained from Eqs. (4), where the geometrical 

data, corresponding to the current design, have to be computed in accordance with the scheme 

shown in Figure 4. The geometrical data needed for the computation of internal forces and loads in 

the truss element are obtained in the same manner. 

Since the design variables b  are continuous, a gradient-based optimization algorithm can be 

used to solve the problem (14)-(15). In this case the solution procedure is iterative and can be 

outlined as follows: 

 

Solution procedure 

1. Set 0=k ; choose some initial ( )0b . 

2. Calculate Mifi ,,0, K=  at ( )kb  (response analysis). 

3. Calculate Middfi ,,0, K=b  at ( )kb  (sensitivity analysis). 

4. Submit the calculated values to the optimizer in order to obtain some improvement ( )kb∆  and 

calculate the improved design ( ) ( ) ( )kkk bbb ∆+=+1 . 

5. Set 1+= kk  and check some appropriate convergence criteria – if fulfilled exit, otherwise go to 

Step 2. 

 

 In order to perform the response and sensitivity analysis, ( )ku  and ( )( )kdd bu  have to be 

calculated at given ( )kb . The response ( )ku  is obtained from the response equation (16), while 

( )( )kdd bu  has to be calculated from the corresponding sensitivity equation (see e.g. [29]) 
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Note that the term in the parentheses on the left is the tangential stiffness matrix of the structure. 

This matrix is known (and already decomposed) from the response analysis. Thus, the sensitivity 

equation can be solved with a rather small additional computational effort: only partial design 

derivatives of internal and external forces – the terms on the right hand side of Eq. (17) – need to be 

computed. 

The shell finite element contributions to bF ∂∂  and bR ∂∂  can be expressed as 
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where 
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 (19) 

Note that the design derivatives in Eqs. (19) turn out to be very complicated expressions. In this 

work they are obtained by using a system for symbolic derivation and automatic code generation 

[18]. The derivation of the corresponding expressions for the truss element is straightforward. All 

the geometrical quantities and their design derivatives, needed for this computation, have to be 

obtained in accordance with the scheme shown in Figure 4. 

 The above outlined solution procedure of the optimization problem can be implemented in 

several different ways. In this work a separate (stand-alone) optimization program and a separate 

analysis program (see Figure 8) have been used. This arrangement enables multi-case optimizations 

(the same simulator is run several times) as well as the solution of complex optimization problems 

(several different simulators are run as necessary). In any case the optimizer runs all the 

simulations, acquires all their output data, assembles the data into a single optimization problem and 

makes use of its own built-in optimization algorithm to improve the design. This procedure is 

repeated in each cycle of the optimization process. 

 
Figure 8. Implementation of the solution procedure 

The whole process is driven by the optimizer which controls the execution of simulation 

processes and the data exchange. The data exchange between separately running programs is 

established by XML conforming data files. That means that the simulator can be any program 

meeting some minimal data exchange requirements related to the format of the input and output 

files. 

Optimization program (optimizer) 

FE analysis programs (simulators) 

IMPROVE 
design 
variables ACQUIRE 

output data 
RUN 
simulators 

FE analysis programs (simulators) 
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5. NUMERICAL EXAMPLES 

In order to illustrate the approach presented above, four numerical examples are considered. The 

first one (a pressure vessel strip) is seen as a correctness test of the approach. The second one 

illustrates the shape optimization of a shell structure with variable thickness. The third example 

demonstrates the optimization of a truss-stiffened shell structure and a possibility to combine 

different types of finite elements within a single design element. The fourth one demonstrates the 

use of several design elements for a truss-stiffened shell. 

Although the finite elements used in this work are non-linear, they may also be used as linear 

elements. The first three examples are solved by using the linear analysis option. The fourth 

example is solved by using both the linear and the non-linear option. The optimization process is 

implemented as shown in Figure 8. For the built-in optimization algorithm of the optimizer the 

gradient-based approximation method described in [15,14] is employed. 

5.1 A pressure vessel strip 

Consider a long cylindrical pressure vessel loaded by an inner pressure. It is well known that in 

cylindrical vessel the bending stresses vanish. This fact is considered in estimating the performance 

of the proposed approach as well as the accuracy of the employed elements. Starting from a non-

circular initial shape a bending-stresses-minimizing shape optimization is performed. The 

difference between the optimized design and the theoretical (circular) shape will give some 

indication on the performance of the proposed approach. Only one quarter of a thin strip of the 

vessel is considered and a straight strip is taken as the starting design (see Figure 9). 

 
Figure 9. The starting and the final shape of the strip; (design dependent) pressure load 

 The data of the structure are as follows. The distances are: mm 1000== OCOA , 

mm 100=== CFBEAD , and the thickness of the shells is mm 10=t . The material is linear 
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elastic with Young’s modulus MPa 210000=E  and Poisson’s ration is 3.0=ν . The structure is 

loaded by inner pressure of MPa 1=p . 

To parametrize the shape of the structure, only one design element with 6123 =××  control 

points is needed, defined as given in Table I. 

Table I. Control point definitions 

Control point X Y Z Weight 
A 0 1000 0 1 
B 11000500 b+  21000500 b+  0 3b  
C 1000 0 0 1 
D 0 1000 -100 1 
E 11000500 b+  21000500 b+  -100 3b  
F 1000 0 -100 1 

 

Thus, three design variables are introduced. Two of them related to the position of intermediate 

control points and one to their weights. From Table I one can conclude that the starting design is 

given by 1,0 321 === bbb  and that the expected final design is 2
2

32
1

21 , === bbb , which 

corresponds exactly to a quarter of a circle. 

 The formulation of the optimization problem is based on the assumption that the minimization 

of bending stresses may be conveniently achieved by minimizing the strain energy C  of the 

structure. Thus, the objective function (to be minimized) is defined as 

 Cf =0  (20) 

There are no further mechanical constraints related to the problem, so the number of behavior 

constraints is zero. Regarding the limits of the design variables, however, it should be noted that the 

weight of a control point must be a positive quantity. Thus, a positive lower limit of 3b  is here 

defined by 1.03 ≥b . 

Table II. Final values of the design variables and the corresponding errors in [%] 

Optimal Variable Initial 
10 elements 20 elements 30 elements 

Analytical

1b  0 0.497708  (0.46) 0.498098  (0.38) 0.498150  (0.37) 0.5 

2b  0 0.497708  (0.46) 0.498098  (0.38) 0.498150  (0.37) 0.5 

3b  1 0.711677  (0.65) 0.710933  (0.54) 0.710843 (0.53) 0.707107 
Distance 

OB  

707.107 999.758  (0.0242)) 999.809  (0.0191) 999.818  (0.0182) 1000 

 

 In order to estimate the accuracy of the elements, the problem is solved using three different 
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meshes: 10, 20 and 30 finite elements. The results are summarized in Table II. It can be seen that 

the errors computed with respect to the analytical solution decrease with the increasing number of 

elements. The error magnitudes, however, are in any case quite small. This becomes especially 

obvious when observing visually the shapes of the three optimal solutions. None of them can be 

distinguished from the exact circular shape. The radii of all optimized strips differ from the 

analytical value by less than 0.025%. 

 It can be concluded that the proposed approach gives very satisfactory results. It also seems 

that (at least for this example) the 4-node finite element performs quite well. The accuracy of all 

three meshes is satisfactory. 

5.2 A free-form variable-thickness shell structure 

The second example is partially taken from [28]. The ground plan of the structure is shown in 

Figure 10. The four corner points of the structure have hinged supports. The material properties are 
2N/mm 30000=E  and 3.0=ν . The structure is loaded by a uniform snow load of 2kN/m 5=w . 

 
Figure 10. Ground plan of the structure and the positions of the control points 

The objective is to optimize the shape and the thickness distribution of the shell by 

minimizing its relative strain energy 

 IniCCc =  (21) 

where the symbol IniC  denotes the strain energy of the shell at the initial (starting) design. Three 

different optimization problems will be considered, distinguished by the constraints imposed on the 

vertical positions Ay  and By  of points A and B respectively (see Figure 10a): 

Case A. m 8≥Ay  

Case B. m 8≥Ay  and m 8=By  

Case C. m 9m 8 ≤≤ Ay  and m 8=By  

20 m 
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In addition to the above constraints the structural volume is constrained to be equal to 3m 60=V  in 

all cases. 

A single design element with 25155 =××  control points is used to parametrize the structure, 

Figure 10b. The design variables are related to the control point positions (variable shape) and 

control point values (variable thickness). The design dependency of the control points 1 through 9 

(Figure 10b) is given in Table III. For other control points the design dependency can be easily 

found by taking into account the symmetry of the structure. It should be noted that the constant 

factors in the expressions are selected so that the order of magnitude of all design variables is close 

to 1. 

 

Table III. Design dependency of the control points 

Control point X Y Z Value 
1 -10000 0 10000 150 9b  
2 15000b−  48000b  10000 150 10b  
3 0 58000b  10000 150 12b  
4 -10000 48000b  15000b  150 10b  
5 25000b−  68000b  25000b  150 11b  
6 0 78000b  35000b  150 13b  
7 -10000 58000b  0 150 12b  
8 35000b−  78000b  0 150 13b  
9 0 88000b  0 150 14b  

 

Table III shows that there are 8 design variables (1-8) related to the shape, and 6 design variables 

(9-14) related to the thickness of the shell. In order to prevent unacceptable designs, the upper and 

the lower bounds of the design variables were selected as given in Table IV. This table also shows 

the initial values of the design variables that correspond to a flat quadratic shell with constant 

thickness of mm 150=t . 
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Table IV. Design variable values and relative strain energies 

Variable Lower Upper Initial Optimal A Optimal B Optimal C 
1 0 1.9 1 0.72549 1.54440 0.0000 
2 0 1.9 1 1.63736 0.90135 0.29797 
3 0 1.9 1 0.19567 0.80382 1.20836 
4 0 4 0 0.63336 0.22387 1.17240 
5 0 4 0 0.85788 2.36815 1.10313 
6 0 4 0 0.50935 0.00000 0.38237 
7 0 4 0 2.32411 2.92379 1.92528 
8 0 4 0 0.28598 0.16219 0.40860 
9 0.1 4 1 3.82926 4.00000 1.38361 
10 0.1 4 1 0.1 0.24125 1.13367 
11 0.1 4 1 0.10120 0.17162 0.1 
12 0.1 4 1 0.1 0.30133 0.1 
13 0.1 4 1 0.11704 0.11988 0.41254 
14 0.1 4 1 0.17143 0.10183 0.45508 
c  - - - 0.24936E-3 0.26322E-3 0.35349E-3 

 

All three cases were solved without problems with the employed optimizer. The final shapes are 

shown in Figure 11. 

 
Figure 11. Optimal shell shapes for cases A, B and C 

Since A is the least and C the most constrained case, one would expect that the strain energy 

of the optimized structure is also the smallest for case A and the largest for case C. As can be seen 

from Table IV, numerical results confirm such expectation. Compared to case A, the strain energy 

has increased by 5.6% in case B and by 41.8% in case C. 

Y    Case A Y    Case B 

Y    Case C 
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Figure 12. Thickness distribution of optimal shapes at cross-sections at 0=z  and m 10=z  

Figure 12 illustrates the thickness distribution of the shell. As can be seen in cases A and B 

the thickness variation is quite large, while in case C the thickness variation is rather moderate. This 

is probably is due to the fact that design C exhibits rather large areas with moderate curvature. 

Except in the middle, the edges are almost straight in case C. It should also be noted that in case B 

one thickness variable reached its upper limit. By relaxing this constraint, the thickness variation 

would probably increase even more. 

 
Figure 13. Control point positions at the final design in case B 

Finally, to illustrate the movement of the control points, Figure 13 shows their positions for 

0.2 0.4 0.6 0.8 1
s1

100

200

300

400

500

600
Thickness @mmD

0.2 0.4 0.6 0.8 1
s1

100

200

300

400

500

600
Thickness @mmD

0.2 0.4 0.6 0.8 1
s1

100

200

300

400

500

600
Thickness @mmD

Case A 
z = 10 m 
z = 0 

Case C 
z = 10 m 
z = 0

Case B 
z = 10 m 
z = 0



 21

the final design in case B. Note that initially all control points were positioned in the 0=y  plane. 

5.3 A truss-stiffened free-form shell structure 

As a third example an asymmetric structure is considered. The shell is pin-jointed to the upper layer 

of a double-layered truss structure (see Figure 14). The thickness of the shell is constant and equal 

to 5 mm. All truss elements are pipes with the outer radius equal to 3 cm and wall thickness equal to 

3 mm. The material properties are MPa 210000=E , 3.0=ν  and 3kg/m 7800=ρ . Along both 

longer edges the structure is supported by hinges. The loading consists of self-weight and a uniform 

snow load of 2kN/m 5.1=w . 

 
Figure 14. Front, side and top view of the structure – initial design 

The objective is to optimize the shape of the structure by minimizing sc  and tc  where sc  and 

tc  denote the relative strain energies of the shell and the truss, respectively. The constraints are 

related to structural geometry and to the buckling of truss elements. The geometric constraints are 

defined as 1≤tv , m 5.5m 5 0 ≤≤ y  and m 6m 5 20 ≤≤ y . The symbol tv  denotes the relative 

volume of the truss (actual volume divided by its value at the initial design), while 0y  and 20y  

denote the y  coordinate of the apex of the lower truss layer at m 0=z  and m 20=z , respectively. 

For each truss element its stress is constrained by 2iEi σσ ≥  where iEσ  denotes the Euler buckling 

stress of the i-th element. Two different optimization problems will be considered, distinguished by 
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the definition of the objective function 0f : 

Case A. scf =0  

Case B. ts ccf +=0  

Thus in case A only the strain energy of the shell is minimized while in case B the objective 

function is the sum of relative strain energies of the shell and truss. 

A single design element with 24243 =××  control points is used to parametrize the structure 

(see Figure 15). The design variables are related to the control point positions, as given in Table V. 

By these definitions the order of magnitude of the design variables is close to unity and the minimal 

vertical distance between two vertical points is 0.15 m. 

 
Figure 15. Design element and control point positions – initial design 

 

Table V. Design dependency of the control point positions 

Control point Y Control point Y 
4 15333 b. +  16 1015483 bb. ++  
5 25333 b. +  17 1125483 bb. ++  
6 35333 b. +  18 1235483 bb. ++  
7 45661 b. +  19 1345483 bb. ++  
8 55661 b. +  20 1455483 bb. ++  
9 65661 b. +  21 1565483 bb. ++  
13 7155 b. +  22 16150 b. +  
14 8155 b. +  23 17150 b. +  
15 9155 b. +  24 18150 b. +  

 

Thus, 18 design variables are introduced. Their lower and upper limit values are given in 

Table VI. The optimization process started in both cases from the initial design given in the same 

table. The process was smooth and stable with an almost monotonic objective function history. 
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The final results are compared in Tables VI and VII. Although the difference seems not to be 

so dramatic when looking at the final shapes superficially (see Figures 16 and 17), it can be seen 

that from the numerical point of view both results are quite different. Also, a closer look at the 

shape of the truss reveals that shape B is much more elegant and more intuitive. 

 

Table VI. Design variable values 

Variable Lower Upper Initial Optimal A Optimal B 
1 0 2 0 0.76967 0.57851 
2 0 2 0 1.63425 2 
3 0 2 0 0.77647 0.73827 
4 0 2 0 0.32051 0.76656 
5 0 2 0 0.24360 1.92769 
6 0 2 0 0.83374 0.92288 
7 0 1 1 0 0 
8 0 1 1 0.40629 0 
9 0 1 1 0 0 
10 0 1 1 1 0.95028 
11 0 1 1 0.92404 0.84638 
12 0 1 1 1 1 
13 0 1 1 0 0 
14 0 1 1 0 0.15654 
15 0 1 1 0.33434 0.49471 
16 0 1 1 1 0.39225 
17 0 1 1 1 0.98491 
18 0 1 1 1 0.36351 

 

 
Figure 16. Optimal design of cases A and B 

Table VII shows that the strain energy of the shell is slightly larger in case B, but the strain 

energy of the truss is significantly lower. Thus, in this particular case it seems that a more efficient 

structure was obtained by taking into account both strain energies. For a general case, however, this 

is difficult to predict. The reason is that the problem of minimizing both strain energies is actually a 

multiobjective optimization problem whose solutions are termed the Pareto set. In this case a 

Case A Case B 
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common procedure was employed to transform the multiobjective problem into its scalar substitute 

by summing up both strain energies, multiplied by such weights that their initial values were equal 

to 1. In this way only a single Pareto optimal point was obtained. In order to search through the 

whole Pareto set, special strategies need to be employed (see e.g. [23]). This topic, however, is 

beyond the scope of this paper. 

Table VII. Relative strain energies 

 Initial Optimal A Optimal B 
sc  1 0.20524 0.22380 

tc  1 0.26835 0.00794 

ts cc +  2 0.47359 0.23175 
 

 
Figure 17. Optimal design of case B - front and side view 

5.4 A truss-stiffened free-form shell structure modeled with several design elements 

In the fourth example the structure consists of a shell supported by a slender truss stiffener in the 

middle of its span (see Figure 18). The thickness of the shell is constant and equal to 1 cm. All truss 

elements are pipes with the outer radius equal to 2 cm and the wall thickness equal to 2 mm. The 

material properties are MPa 210000=E , 3.0=ν  and 3kg/m 7800=ρ . Along both shorter edges 

of the shell as well as on both ends of the truss the structure is hingly supported. The structure is 

loaded by its own weight and a uniform snow load of 2kN/m 5.1=w . 

The objective is to optimize the shape of the structure by minimizing the strain energies of the 

truss and the shell. As mentioned in the above example, this is again a multiobjective problem. Its 

scalar substitute is obtained by defining a single objective function as a sum ts ccc +=  of relative 

strain energies of the shell and the truss, respectively. The constraints are related to the relative 

volume tv  of the truss, which should not increase, and to the vertical coordinate Ay  of point A of 

the shell, which must be between 1 and 2 m. Thus one has 1≤tv  and m 2m 1 ≤≤ Ay . 

Three design elements are employed to parametrize the shape of the structure. The first design 
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element with 12223 =××  control points is used for the truss and the shell elements attached to its 

upper layer (see Figure 19). The other two design elements with 9133 =××  control points are used 

for the left and right wing of the shell, respectively. Only positional continuity is required on the 

common boundaries of the design elements. The design variables are related to the control point 

positions as given in Table VIII. The vertical coordinates of the control points, not listed in the 

table, can be found by symmetry. 

 
Figure 18. Shell supported by a slender truss  

 
Figure 19. Design elements and their control points 

 

Table VIII. Vertical coordinates of the control points and their design dependency 

Control point Y Control point Y 
1 0  7 55b  
2 15b  8 45b  
3 0  9 55b  
4 4.015.0 3 −b  10 0  
5 ( )21 14.05 bb +−  11 0  
6 4.015.0 3 −b  12 0  

 

10 m 

6 m 
6 m 

0.6 m 

A

B

1 

3 

2 

7 

9 

8 

10

11

12

1 

6 

3 

4 5 

2 



 26

For the optimization process, both linear and non-linear options for the structural model are 

used. Although the displacements are assumed to be small, it might be interesting to see the 

differences in the obtained results. 

5.4.1 Linear structural model 
The optimization process was started from the initial design shown in Figure 18. The employed 

gradient-based optimizer converged to design A shown in Figure 20. Since there are not many 

constraints, the truss was reshaped manually to form an arch. For this purpose, the first design 

variable 1b  was reset to its upper limit and the optimization process was restarted. The structure was 

reshaped completely and converged to design B shown in Figure 21. The objective function of 

design B is lower than that of design A. This means that the first result was surely not the global 

solution. 

 By observing the result B one gets the impression that the result might be further improved by 

lowering the vertical position of point B (see Figure 18). Therefore, the value of the design variable 

5b  was reduced. After restarting the optimization process, the structure was reshaped again and 

converged to design C, shown in Figure 22. This is the result with the lowest objective function 

value. Since further local optima could not be found, it can be concluded with reasonable 

probability that for the considered problem there are three local optima, design C being the best. 

Thus, design C is probably also the global solution of the problem. The design variable values and 

the relative strain energies for all solutions are listed in Tables IX and X. 

Table IX. Design variable values 

Variable Lower Upper Initial Optimal A Optimal B Optimal C 
1 0 2 0 0 0.77214 0.119625 
2 0 2 0 0 0 0.33406 
3 0 2 0 2 2 2 
4 0 2 0 0.95284 0.29530 1.12396 
5 0 2 0 0.64716 0.73070 0.41624 

 

 
Figure 20. Optimal design A (L model) 
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Figure 21. Optimal design B (L model) 

 
Figure 22. Optimal design C (L model) 

Table X. Relative strain energies 

 Initial Optimal A Optimal B Optimal C 
sc  1 0.25667E-3 0.06570E-3 0.15682E-3 

tc  1 0.27203E-3 0.43407E-3 0.18037E-3 

ts ccc +=  2 0.52870E-3 0.49977E-3 0.33719E-3 
 

This example shows that also rather small design problems with only a few design variables 

might well have several local optima being quite diverse in their shape. Care should therefore be 

taken when formulating and solving such optimization problems. In any case, it seems to be a good 

idea to run the optimization process from several starting points that correspond approximately to 

some designs that are expected to be efficient by intuition. The other possibility would be to use one 

of the evolutionary optimizers. This would substantially increase the probability to find the global 

optimum. 

5.4.2 Non-linear structural model 
Starting from the same initial design as with the linear model, the solution process converged 

quickly to design D, shown in Figure 23. Note that the obtained solution is quite similar to design B 

obtained with the linear model. The main difference is a somewhat increased curvature of the 

structure. 
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Figure 23. Optimal design D (NL model) 

 
Figure 24. Optimal design E (NL model) 

 For the same reasons as already discussed with the linear model, the vertical position of point 

B was lowered in order to restart the optimization process and to search for another optimum 

solution. The structure was reshaped and the optimization process converged to design E, shown in 

Figure 24. Note that this result does not show much similarity with the designs obtained by using 

the linear model. 

 

Table XI. Design variable values 

Variable Lower Upper Initial Optimal D Optimal E 
1 0 2 0 0.77214 0.77214 
2 0 2 0 0 0 
3 0 2 0 2 2 
4 0 2 0 0.11925 1.08156 
5 0 2 0 0.88642 0.13241 

 

Table XII. Relative strain energies 

 Initial Optimal D Optimal E 
sc  1 5.49397E-3 5.82268E-3 

tc  1 0.65988E-3 0.62373E-3 

ts ccc +=  2 6.15385E-3 6.44641E-3 
 

 The values of the design variables, corresponding to designs D and E, are given in Table XI. 

The corresponding strain energies are listed in Table XII. It can be seen that design D exhibits a 
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lower objective function value. Thus, design E is obviously only a local optimum. 

 Finally, it might be interesting to compare all of the obtained results with respect to the 

structural strain energies. For this purpose all designs were analyzed using the non-linear analysis 

option and the results are summarized in Table XIII. It is obvious that designs B, D and E are all 

quite good compared to C, and especially to A. It is interesting to note that here design C looks 

worse than B which seems to be in contrast with the data given in Table X. This, however, is only a 

consequence of the employed weighting factor values used to define the relative strain energies of 

the structure. 

Table XIII. Strain energies calculated using the NL analysis option 

 Optimal A Optimal B Optimal C Optimal D Optimal E 
sC  52984 10947 26523 10680 11319 

tC  341 566 233 571 539 

ts CCC +=  53325 11513 26756 11251 11858 
 

CONCLUSIONS 

The proposed procedure offers a unified approach to shape optimization of variable thickness shell 

structures with or without truss stiffeners. A body-like design element enables consistent shape 

variations of both the shell and the truss part of the structure. The smoothly varying thickness of the 

shell is introduced in a simple manner by a scalar field defined over the design element. The 

presented numerical examples indicate that the proposed approach performs quite well, although 

there are several aspects requiring careful consideration. 

Firstly, for truss-stiffened shells the design problem often becomes a multiobjective one. On 

one hand, transforming the multiobjective problem into a conventional one is a very challenging 

task, since the results may depend significantly, for example, on the weighting factors used. On the 

other hand, ‘keeping’ the problem multiobjective and performing a systematic search through the 

Pareto set requires numerical implementation of adequate strategies and substantial increase of 

computational effort. 

Secondly, there is a question regarding the use of linear or non-linear structural analysis. As 

shown in the last example, different models may lead to quite diverse results although the actual 

displacements of the structure are quite small. This might be a consequence of the fact that slight 

shape changes of the feasible domain of the problem may easily shift the optimal point substantially 

if the feasible domain is locally flat. In such a situation a slight shape change of the domain may 

also cause a gradient-based optimizer to converge to different local solutions. 
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