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Abstract A viscosity type damping on strains is en-

hanced using a heuristic approach for introducing a con-

trollable high frequencies numerical dissipation into one-

step time integration scheme. The basic idea of the ap-

proach is to apply damping at places, where it is needed,

at times when it is needed. To this end a computationally

efficient algorithm for identifying the need for damping

is developed. The identifying algorithm keeps track of

a user prescribed number of recent changes of signs of

strains increments, which enables it to decide whether

damping should be engaged or not. A special scaling

function for damping is introduced to smoothen the tran-

sition between damped and undamped phases. The ap-

M. Saje, M. Gams, I. Planinc

Faculty of Civil and Geodetic Engineering

Jamova 2, 1000 Ljubljana, Slovenia

Tel.: +386-1-47-68-613

Fax: +386-1-47-68-629

E-mail: msaje@fgg.uni-lj.si

proach is verified in the geometrically exact plane beam

dynamics, but is in principle entirely general.

Keywords Dynamics · Non-linear · Artificial damping ·

Beams

1 Introduction

The controllable dissipation of high frequencies in the

time integration of linear and non-linear structural dy-

namics is not a privilege but a necessity. The issue has

been studied and much resolved in linear dynamics (see,

e.g. the surveying article by Fung [10]), while the work

in the non-linear dynamics is still in progress.

As reported by Kuhl and Crisfield [18], the stability

is a key issue in non-linear dynamics. There are three

main-stream groups of algorithms, which aim to satisfy

the stability criterion of the energy conservation/decay.

The first group of algorithms comprises numerical dis-

sipation algorithms for the linear dynamics. These al-
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gorithms do not guarantee dissipation of energy in the

non-linear regime, and energy in a time step can be cre-

ated instead of dissipated (see, e.g. [8; 9]).

The second group of algorithms uses the enforced

constraint methodology, where energy or momenta con-

servation requirements are introduced via the Lagrange

multiplier method. The approach conserves energy per-

fectly, but problems with stability of integration may still

appear, as discovered by Kuhl and Ramm [19]. Hence,

the main focus of research seems to rest on the third

group of algoritms, the so-called ‘Energy-Momentum Meth-

ods (EMM)’.

The conservation of energy and momenta in Energy-

Momentum methods is algoritmic in the sense that the

algorithm inherently conserves these quantities, and the

stability of the algorithm is unchallenged by the above

mentioned groups of algorithms. The earliest schemes

employing the EMM methodology were proposed by Simo

et al. [28]. The concept has been widely adopted and ap-

plied to a variety of problems. Another advantage of the

algorithm is the ease with which it can be modified to

include a guaranteed numerical dissipation. Various mod-

ifications of the method have been developed to include

the dissipation [1; 2; 8; 15; 18; 25]. The contribution of

the present paper is also aimed at this area of research.

In addition to the three main groups of algorithms

mentioned above, a subgroup could be identified, which

introduces Lagrange multipliers for imposing kinematic

constraints resulting in a set of differential-algebraic equa-

tions, which renders the system stiff by default, as the

frequencies associated with algebraic equations are in-

finite. A number of approaches for integration of these

equations have been presented, see, e.g. [3; 4; 6; 11; 16].

Similarly, Betsch and Steinmann [5] treated the mechan-

ical system as constrained from the onset, resulting in a

formulation with greater number of multipliers than in

other formulations.

The performance of the present energy decaying ap-

proach is demonstrated in conjunction with the energy

and momenta conserving method by Gams et al. [11] for

the planar Reissner [22] beam. The method is essentially

a modified version of the Energy-Momentum method,

in which the kinematic constraints are satisfied ‘weakly’

and strains updated incrementally, resulting in an inher-

ent energy and momenta conservation.

The idea of using rate form of the strain-displacement

relations to achieve energy and momenta conservation

was originally developed by Sansour et al. [23] for shell

formulations. It was applied to cases of classical and

chaotical motion of shells as well as cases of dynamic sta-

bility [24]. Futhermore, Sansour et al. recently extended

the approach to arbitrary continuum formulations [26],

which is a generalization of the method presented in

Gams et al. [11].

The present approach for damping high frequencies

uses a viscosity-type damping on strains [1; 2; 25]. The

novelty of the approach is applying the damping only at

places where it is needed and at times when it is needed.
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To this end a heuristic algorithm is proposed for identi-

fication of such places, and a special scaling function for

damping to smoothen the transition between damped

and undamped phases. The proposed heuristic concept

for damping high frequencies is, however, entirely general

and applicable in conjunction with any time-stepping in-

tegration scheme.

The outline of the paper is as follows. In the next sec-

tion, an energy conserving scheme for geometrically ex-

act planar beams is briefly presented. The scheme serves

as a platform for testing the novel concepts of numerical

damping, presented in Sect. 3. In Sect. 4 the scheme is

thoroughly tested on a set of representative numerical

simulations, featuring both highly and moderately stiff

systems.

2 Energy conserving scheme

2.1 The planar Reissner beam [22]

An initially straight planar elastic beam of initial length

L in the (x, y)-plane of a spatial Cartesian coordinate

system (x,y,z) with base vectors ex, ey and ez is consid-

ered (Fig. 1). The beam is initially rotated with respect

to ex by an angle ϕ0. A material point on the beam cen-

troid axis is identified by the material coordinate, s ∈

[0, L]. The cross-sections, associated with the material

points, are assumed constant and symmetric with respect

to the plane (x, y). The Bernoulli hypothesis holds, with

membrane, shear and bending strains being taken into

��
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Fig. 1 Beam configurations, left. Notation of stress resul-

tants, right.

account. The spatial position of an arbitrary material

point of the centroid axis, s, is identified by spatial co-

ordinates x(s) and y(s).

2.2 Kinematics of the beam

The kinematic equations of the beam are given by

ε = Λ (u + x)′ + c1, (1)

where ε is the strain vector, u the displacement vector

and x the initial position vector of the centroid axis. Λ

is the rotation matrix and c1 is a given vector constant:

ε =

⎡
⎢⎢⎢⎢⎢⎣

ε

γ

κ

⎤
⎥⎥⎥⎥⎥⎦

, u =

⎡
⎢⎢⎢⎢⎢⎣

u

v

ϕ

⎤
⎥⎥⎥⎥⎥⎦

, x =

⎡
⎢⎢⎢⎢⎢⎣

x0 + s cosϕ0

y0 + s sinϕ0

0

⎤
⎥⎥⎥⎥⎥⎦

,

Λ =

⎡
⎢⎢⎢⎢⎢⎣

cosϕ sin ϕ 0

− sinϕ cosϕ 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, c1 =

⎡
⎢⎢⎢⎢⎢⎣

−1

0

0

⎤
⎥⎥⎥⎥⎥⎦

.

ε, γ and κ are axial, shear and bending strain, respec-

tively; u and v are the x and y components of the dis-

placement vector and ϕ is the rotation. The prime (′)

denotes differentiation with respect to s.
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2.3 Principle of virtual work

The principle of virtual work of the beam is given by:

∫ L

0

[
NT δε − (pT − üT cρ ) δu

]
ds − PT δΨ = 0. (2)

Here N is the vector of stress resultants in the local basis

(en, et, ez), p is the vector of external distributed loads

(given per unit length of the undeformed axis), cρ is the

diagonal matrix of cross-sectional inertial properties, P

is the vector of generalized boundary loads and Ψ is the

vector of generalized boundary displacements:

N =

⎡
⎢⎢⎢⎢⎢⎣

N

Q

M

⎤
⎥⎥⎥⎥⎥⎦

, cρ=diag(Aρ, Aρ, Iρ), p =

⎡
⎢⎢⎢⎢⎢⎣

px

py

mz

⎤
⎥⎥⎥⎥⎥⎦

,

PT = [P1, P2, P3, P4, P5, P6] ,

ΨT= [u(0), v(0), ϕ(0), u(L), v(L), ϕ(L)] .

In the case of an elastic material, N takes a simple form:

N = cE ε =diag(EA, GAS, EI) ε.

E and G are elastic and shear moduli, A and AS are

the area and the shear area of the cross-section of the

beam, and I is its moment of inertia; ρ is density of

material; δ denotes variation; a superposed dot denotes

the differentiation with respect to time.

δε in Eq. (2) is obtained by the variation of Eq. (1),

i.e. δε =δ
[
Λ (u + x)′ + c1

]
. Inserting the resulting vari-

ation into Eq. (2) yields
∫ L

0

[NT Λ δu′ + NT δΛ (u + x)′

−(pT − üTcρ) δu] ds − PT δΨ = 0.

(3)

By introducing an auxiliary matrix

Y =

⎡
⎢⎢⎢⎢⎢⎣

− sinϕ cosϕ 0

− cosϕ − sinϕ 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

we can rewrite Eq. (3) as

∫ L

0

[RT δu′ + ZT (u + x)′ δϕ

−(pT − üT cρ) δu] ds − PT δΨ = 0,

(4)

where

RT= NT Λ = [Rx, Ry, M ]

are the stress resultants with respect to the spatial basis

(Fig. 1), and

ZT= NT Y = [−Ry, Rx, 0] .

The principle in Eq. (4) is ready for the application

of a displacement-based finite element formulation, as it

only includes variations of displacements.

2.4 Hamilton’s principle

The virtual work principle given in Eq. (4) is integrated

over the time interval [tn, tn+1] to obtain Hamilton’s

principle for the beam
∫ tn+1

tn

{
∫ L

0

[RT δu′ + ZT (u + x)′ δϕ

−(pT − üTcρ) δu] ds − PT δΨ} dt = 0.

(5)

The same integration is applied to the kinematic equa-

tions in the time rate form:

∫ tn+1

tn

ε̇ dt =
∫ tn+1

tn

[
Λ̇ (u + x)′ + Λ (u′)·

]
dt. (6)
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The reason for taking the rate, i.e. the weak form rather

than the strong form is described in [11]. Finally, the

time integration of constitutive equations is performed:

∫ tn+1

tn

Ndt =
∫ tn+1

tn

cE ε dt. (7)

2.5 Time discretization (midpoint scheme)

For the time discretization of Hamilton’s principle, Eq.

(5), and its adjoined set of the constraining kinematic

and constitutive equations (6) and (7), we use the fol-

lowing midpoint approximation rules:

∫ tn+1

tn

f(t) dt ≈ f(tm)∆t, (8)

ḟm ≈ fn+1 − fn

∆t
=

∆f

∆t
, (9)

f̈m ≈ ḟn+1 − ḟn

∆t
=

∆ḟ

∆t
, (10)

where

tm =
1
2
(tn + tn+1),

∆t = tn+1 − tn.

‘f ’ refers to an arbitrary function of t. Subscript ‘m’

refers to the midpoint configuration at tm = tn + 1
2∆t,

‘n’ to that at tn and ‘n+1’ to the one at tn+1 = tn +∆t.

The application of the midpoint rules to Eq. (5) yields

{
∫ L

0

[RT
m δu′

m + ZT
m (u + x)′m δϕm

−(pT − üTcρ)m δum] ds − PT
m δΨm}∆t = 0.

(11)

The midpoint time integration of kinematic equations

(6) gives
∫ tn+1

tn

ε̇ dt ≈ ε̇m ∆t

=
[
Λ̇ (u + x)′ + Λ (u′)·

]
m

∆t.

As ε̇m ∆t = ∆ε by Eq. (9), this yields

∆ε = Ym (u + x)′m ϕ̇m ∆t + Λm(u′)·m∆t

= Ym (u + x)′m ∆ϕ + Λm ∆u′.
(12)

Note that matrices Λm = Λ(ϕm) and Ym = Y(ϕm)

are consistently evaluated at the midpoint configuration

rather than by the trapezoidal rule. This way the orthog-

onality of the rotation operator preserved. The midpoint

time integration of the constitutive equations (7) results

in their standard form:

∫ tn+1

tn

N dt =
∫ tn+1

tn

cE ε dt ⇒ Nm= cE εm. (13)

2.6 Energy conservation

The mechanical energy (Π) of the deformed, yet un-

loaded beam at a specific time is the sum of the strain

and kinetic energies

Π =
1
2

∫ L

0

(
εT cE ε + u̇T cρ u̇

)
ds.

The change of the mechanical energy between two con-

secutive time stations, tn and tn+1, is

∆Π =
1
2

∫ L

0

(
εT

n+1 cE εn+1 − εT
n cE εn

+ u̇T
n+1 cρ u̇n+1 − u̇T

ncρ u̇n

)
ds.

The differences of the squares of ε and u̇ are rewritten

as:

1
2
(ε2

n+1 − ε2
n) =

εT
n+1 + εT

n

2
(εn+1 − εn) = εT

m ∆ε,

1
2
(u̇2

n+1 − u̇2
n) =

u̇T
n+1 + u̇T

n

2
(u̇n+1 − u̇n) = u̇T

m ∆u̇.
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εm and u̇m denote the midpoint values of ε and u̇ eval-

uated by the trapezoidal rule. The product of the veloc-

ities is further modified

u̇T
m ∆u̇ =

∆uT

∆t
üm ∆t = üT

m ∆u.

In the last step, u̇n+1+u̇n

2 = ∆u
∆t was assumed, which also

gives the velocity update for the scheme

u̇n+1 = 2
∆u
∆t

− u̇n.

With the help of Eq. (13) the energy change in a time

step becomes

∆Π =
∫ L

0

(
NT

m ∆ε + üT
m cρ ∆u

)
ds. (14)

The strain increments are substituted by the expression

given in Eq. (12), leading to

∆Π =
∫ L

0

[NT
m Ym (u + x)′m ∆ϕ

+NT
m Λm ∆u′ + üT

m cρ ∆u] ds,

(15)

or in the abbreviated form

∆Π =
∫ L

0

[RT
m ∆u′ + ZT

m (u + x)′m ∆ϕ

+ üT
m cρ ∆u] ds.

(16)

After we eliminate the external loading terms from Eq.

(11) and compare the result with Eq. (16), we see that

the expressions in equations are virtually the same, with

the differences being that (i) in Eq. (11) we have infinites-

imal variations, while in Eq. (16) there are changes in u,

v and ϕ; and (ii) Eq. (11) represents the principle of

virtual work and thus identically equals to zero for any

virtual displacements, while Eq. (16) only represents the

change of energy at two consecutive time stations, which

generally does not vanish for any finite-size increments

of generalized displacements. If, however, the principle

of virtual work is satisfied indeed, it is easy to show that

Eq. (16) also vanishes for any ∆u, related to ∆ε by Eq.

(12). This yields ∆Π = 0, and, consequently, the conser-

vation of the energy in the time step.

3 Numerical damping

3.1 Concepts

Many time-integration schemes with damping have been

developed and extensively used so far [7; 13; 15]. Their

primary goal is to filter out high frequencies of the re-

sponse, which, in turn, increases the stability of solu-

tion. They are used both in energy non-conserving and

conserving schemes. In fact, the response of any energy

conserving scheme inherently includes high frequencies,

which often yields physically unreasonable solutions [11;

15]. Finding a computationally effective damping proce-

dure, which truly affects only the highest modes, is the

Holy Grail of the non-linear dynamics. The solution we

are about to present is aimed towards this goal.

The main idea behind the proposed approach is to ap-

ply damping at places where it is needed, at times when

it is needed, and doing so at as low numerical cost as

possible. Another peculiarity of the present approach is

the use of a non-linear damping, the issue not often met

in literature. Its aim is a numerical smoothness, which

will be addressed later in the text. Damping is applied
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to strains (in a similar way as in [1], [2] or [25]), rather

than to both displacements and strains as in [15], where

damping of both strains and displacements is advocated

to assure energy decay in the case of very small or vanish-

ing deformations. Such an argumentation is in contrast

with present formulation, where damping is disengaged

if the rate of deformations is small, as is explained in

Sect. 3.3.

The need for damping is identified in the strain space,

because the high frequencies are usually easier to iden-

tify in the strain rather than in the displacement space.

Another reason for applying damping to strains only is

that the displacements are already indirectly affected by

damping of the strains. The concept of identification is

empirical by origin, and its physical aspects are pur-

posely neglected.

The approach will be combined with the energy con-

serving scheme presented in Sect. 2 (or in more a detail

in [11]), yet it is by no means restricted to this particu-

lar formulation. The concept is in fact entirely general,

and can be used without further contemplation in any

displacement-based formulation.

3.2 Theory

As mentioned in Sect. 3.1, the damping is directly en-

forced only to strains:

ε∗m =
1
2
(εn + εn+1) + α g (ε̇m) . (17)

Here α presents the magnitude of damping and g stands

for an arbitrary sign preserving function. Using the mid-

point rule we write

ε∗m = εm + α g

(
∆ε

∆t

)
. (18)

The change of energy in a time step in absence of external

forces is now (following from Eq. (14)):

0 =
∫ L

0

(
(cE ε∗m)T ∆ε + üT

m cρ ∆u
)

ds

0 =
∫ L

0

(
(cE εm)T ∆ε + üT

m cρ ∆u
)

ds

+
∫ L

0

α
(
cE g

(
∆ε
∆t

))T
∆ ε ds.

(19)

While we have already established that the first row of

Eq. (19) equals ∆Π , we can rewrite the second one by

introducing a modified scalar function g̃, which still pre-

serves the sign of the argument

0 = ∆Π +
∫ L

0

α g̃
(
∆ ε2

)
ds.

Hence, the mechanical energy in a time step is dissipated

for any α > 0.

3.3 Algorithm

As mentioned in Sect. 3.1, we desire to apply damping

at places where it is most needed, at the time when it

is needed. Locations of practical interest are the integra-

tion points. As there can be many of them, the algorithm

for identifying the need for damping must be computa-

tionally as effective as possible. The following procedure

is proposed: the analysis starts without damping. In each

time step at every integration point, the signs of the last
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γ̃ changes of strains are observed (at least one of these

changes must, however, be larger than a prescribed value

τ ). If they form a repeated sequence of pluses and mi-

nuses in a perfect saw-like pattern, damping is engaged.

With damping engaged, again, in each time step, the

signs of the last δ̃ changes are observed. If they are ei-

ther all positive or all negative, the damping is disen-

gaged. Also, if all δ̃ actual changes of strains are smaller

than a prescribed value τ , the damping is disengaged.

After the damping is disengaged, the routine starts over

testing whether damping should be engaged again. Both

situations are schematically presented in Fig. 2.

�

�
i

�

+ -

�

+ -

~

+

�

+
~

++

*

**

*

**

engage damping

disengage damping

Fig. 2 Schematic drawings of situtaions indicating damping

should be engaged or disengaged.

The value of the threshold τ is by no means arbi-

trary. Prior to the analysis, we choose the precision of

the internal forces. Oscillations beyond these values will

be considered as a potential noise, and will be, if so deter-

mined by the identifying algorithm, damped. The chosen

values are divided by the corresponding stiffnesses (cE)

to obtain the thresholds for the corresponding strains.

γ̃ and δ̃ present the number of observed signs of strain

increments (see Fig. 2, where γ̃ = δ̃ = 4). Values of these

parameters are measures of strictness regarding the start

or the end of damping. There is no upperlimit, while the

theoretical lower limit is two. The range of values for γ̃

and δ̃ from four to ten is reasonable. They need not be

equal.

The only restriction imposed on the damping func-

tion g is that it is sign preserving. Nevertheless we only

have three conceptually different choices : (i) an odd

power type, (ii) a linear function or (iii) an arctan type

of function.

The odd power type function should, in principle,

be the most aggressive toward the high frequency con-

tent, but in practice its aggression is also its pitfall.

Damping is found to be too intensive and leads to either

too strong damping or to a loss of convergence of the

Newton-Raphson method at the onset of the damping

phase. The linear function is the most commonly pre-

ferred function in the computational community, largely

due to simplicity of theoretical deductions, as damping

formulations are rarely as simple as the one given in Sect.

3.2. The arctan type of function sets an upper limit on

the amount of damping, which increases the stability of

the Newton-Raphson procedure in transitions between

the damped and undamped phases, and is therefore the

choice of preference in our analyzes.

In fact, further parameter β is introduced into the

damping function, which smoothens the transition even
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further:

g(ε̇m) = arctan
(

ε̇m

β

)
.

3.4 Unexplored options

One might justifiably argue that the price of the

algorithm might still be too high for extremely large

systems, as more memory is demanded to monitor the

strain history and identify the oscillations. In those cases

room is still left to simplify further the proposed algo-

rithm. For example, one might decide in advance, where

in the system the artificial damping is allowed, and dis-

able it in other locations. In this way enormous savings

might be achieved. Another option would allow damping

to work only on one kind of strains, effectively cutting

the computer memory requirement to one third. These

approaches and their effects are, however, not analyzed

further in this paper.

4 Numerical simulations

The computer code was generated entirely in an auto-

matic code generating environment AceGen [17], which

is able to produce the finite element code in various pro-

gramming languages. The actual computations were per-

formed in MATLAB [20]. In order to avoid locking, the

reduced numerical integration was used for the stiffness

part, whereas full integration was used in inertia terms.

The formulation sets no restrictions regarding the order

of spatial interpolation. In all numerical cases presented

here, the quadratic elements are used.

4.1 The swinging pendulum

This example, leading to a highly stiff system of differ-

ential equations, was originally proposed by Bauchau et

al. [3; 4], and subsequently analyzed by Ibrahimbegović

and co-workers [14; 15; 16]. The pendulum consists of a

flexible beam hinged at both ends into two rigid links

(Fig. 3). The rigid links impose a kinematic constraint

corresponding to fixed distance between points O1 and

A, and O2 and E.

0.72 m 0.36 m

0.36 m

B
m

P

t [s]

P [N]

0.128 0.256

2

A E

O2O1

Fig. 3 The swinging pendulum: geometry and load data.

A point mass m = 0.5 kg is rigidly connected to the

flexible beam at its mid-span. Point B is the observa-

tion point. The material and geometric properties of the



10

flexible beam are:

E = 73 · 109 N/m2
, A = 0.005 · 0.001 m2,

L = 0.72 m, I =
1
12

· 0.005 · 0.0013 m4,

ρ = 2700 kg/m3, mBEAM = 0.00972 kg.

Shear strains are made negligible by setting a large value

for the shear modulus (G = 100 E). As in [3] and [14]

the rigid links are assumed weightless (ρ = 0 kg/m3)

and their rigidity is modelled by assuming large Young’s

modulus, i.e. ten times the value of the modulus of the

flexible beam. A time step ∆t = 0.0005 s is used. Four

finite elements were used to model each rigid link and

eight finite elements for modelling the flexible beam.

The system is initially at rest. It is set in motion by a

horizontal time-dependent pulse at the mid-span of the

beam. The time variation of the pulse intensity is shown

in Fig. 3. After the pulse vanishes at t = 0.256 s, the

system is left to oscillate freely.

At first, the links are rotating in the counter-clock-

wise direction. At t ≈ 0.64 s, the right link reverses its

direction and starts rotating clock-wise. Simultaneously,

the horizontal velocity of the point mass changes its di-

rection, which acts almost like an impact on the system.

A smooth response dominated by the low frequencies

abruptly changes into a complicated high frequency re-

sponse. This event, however, does not perturb predomi-

nantly swinging motion, but plagues it by high frequen-

cies of internal forces [11; 14; 15].

The case is calculated with three different settings of

the damping parameters. The undamped case (α = 0),

the slightly damped case (α = 0.01, β = 100, γ̃ = δ̃ = 5),

and the moderately damped case (α = 0.1, β = 100,

γ̃ = δ̃ = 5). The changes greater than 0.01 N or 0.00001

Nm are considered as the numerical threshold for internal

forces and the bending moment, respectively. Fig. 4 de-

picts the solution over the entire time domain. The com-

parison between the three solutions (undamped, slightly

and moderately damped) is impossible on that scale, and

so two magnifications are provided in Fig. 5. Only there

can we recognize the differences and analyze results. It

is clear that the slightly damped solution follows the un-

damped one quite closely, and only a slightly smoother

response in the displacement domain is obtained, while

the moderately damped solution provides significantly

smoother solution. Both damped solutions obviously pre-

serve principal low-order frequency periods of the solu-

tion, just as in Bauchau and Theron [4], but unlike as in

Ibrahimbegović et al. [15].

The effect of damping (Fig. 6) on the total energy

is very interesting, as it shows that only a very limited

amount of energy has been dissipated, which is especially

true for the case with α = 0.01. Futhermore, it reveals

that the rate of energy decay appears to diminish with

time, which is desired.

Fig. 7 depicts areas od damping in time/space do-

main. Dark areas mark damping. It can clearly be seen,

that most of damping takes place in the ‘central’ flexible
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Fig. 6 Swinging pendulum. The effect of damping on energy.

γ̃ = δ̃ = 5.

part of the beam, whereas damping in rigid links is only

due to axial deformations. There appears to be hardly

any damping at all due to the bending strains. Even

though the rate of damping reduces with time, there is

no indication it may ever stop. The results in Fig. 7 sug-

gest some reduction of damping with time, but not on

the scale presented in Fig. 6. This is due to the reduc-

tion of velocities with time, which in turn reduces the

(velocity proportional) damping.

While the picture in Fig. 7 may be interesting to look

at, and some insight is indeed given into where the most

oscillatory response appears, it is only a byproduct of

the analysis. The main focus should remain on displace-

ments and the internal forces, the latter are presented

and analyzed in Fig. 8.

Once damping is applied, the internal forces become

more ‘reasonable’, as the high frequencies are filtered

out. The most problematic among the internal forces are

the axial forces. The noise is filtered out by both damp-

ing cases. The shear forces are by far not as problem-

atic, because their maximal values are so much smaller

compared to the maximal values in the axial force, and

even the undamped solution is not entirely unacceptable.

The response of the undamped bending moments is also

very oscillatory. This is remedied with the damping case

α = 0.01 already, which can be seen if Fig. 8 is magnified

(not presented here). The damping case with α = 0.1 fur-

ther smoothens the response. Please observe again from

Fig. 5 how little effect the damping has on the response

of the displacements!

Finally we examine the effect of damping on the fre-

quency spectrum of the internal forces. This is achieved

by the Discrete Fourier Transform algorithm, a built-in

function of MATLAB [20]. The results, presented in Fig.

9, show that high frequencies are well eliminated by the

present energy-decaying scheme. Assuming the rule of
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Fig. 7 Swinging pendulum. Damping in time and space for

strains ε, γ and κ (α = 0.01).

thumb in dynamics, which states that only frequencies

of about ( 1
10 ∆t) or less are consistently taken into ac-

count, we can estimate that the frequencies higher than

about 200 Hz represent the numerical noise and should

be damped out. This rule strictly applies only to the

displacements, while the related limit for the strains is

not known. It is therefore only a rough estimate. In light

of this, it appears that the damping case α = 0.1 has

damped out too much of the low frequencies, while the

damping case α = 0.01 has performed outstandingly.

4.2 Planar motion of a multibody system

This example of a stiff dynamical system was first intro-

duced by Ibrahimbegović and Mamouri [14] to demon-

strate the versatility of their formulation for dealing with

different types of joints. The example is, however, of in-

terest in its own right, since it undergoes interesting con-

figurations, responds in high and low frequencies, and

cannot be satisfactorily solved with non-conserving meth-

ods, such as the Newmark [21] or HHT-α [13] methods,

as was clearly shown in [14].

T [Nm]

T

2.5 m 1 m 1 m

t s[ ]0.125 0.25

5

B

1.25 m1.25 m

C

Fig. 10 The multibody system: geometry and load data.

The multibody system under consideration is made

of 4 flexible members interconnected by either revolute

or prismatic joints (Fig. 10). Point B is the observation

point. The system is initially at rest. It is put into mo-

tion by a concentrated torque at the right support. The

time variation of the torque is depicted in Fig. 10. The

system is modeled by 12 quadratic finite elements. The

remaining descriptive data are:

EA = 5.65 · 105 N, GAS = 1.4038 · 105 N,

EI = 3.04 · 10 Nm2, Aρ = 1.35 · 10−2 kgm−1,

Iρ = 1.125 · 10−6 kgm, ∆t = 0.001 s.
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Again three different settings are used for the compu-

tations, the undamped case (α = 0), the slightly damped

case (α = 0.0005, β = 10, γ̃ = δ̃ = 5), and the moder-

ately damped case (α = 0.001, β = 10, γ̃ = δ̃ = 5). The

numerical threshold for detection of force and moment

oscillations is set to 0.1 N and 0.001 Nm.

The displacements in all three cases vary quite a bit,

especially in the case with moderate damping (Fig. 11).

Because the correct solution is unknown, it is necessary

to analyze the accompanying energy and internal forces

graphs.

-2

0

2

0 5 10 15

Vertical displacements [m]

t [s]

� =0.0005

� =0.0

� =0.001
-2

0

2

-2

0

2

Fig. 11 Multibody system. Vertical displacements at point

B.

In Fig. 12, the corresponding graphs of energies are

shown. The amount of energy decay in this case is quite

high. The scheme with smaller α does not necessarily

decay less energy than the one with higher α. The rea-

sons for this are explained in the last paragraph of this

section.

0 5 10 15
0

2

4

6

8

10
kinetic + potential� [J]

t [s]

� =0.0

� =0.001
� =0.0005

Fig. 12 Multibody system. The effect of damping on energy.

γ̃ = δ̃ = 5 and β = 10 in cases with damping.

The internal forces are shown in Fig. 13. One may

without a hesitation conclude that the undamped results

give erroneous forces, but the choice regarding the cor-

rect amount of damping is perhaps not so easy.

Frequency spectrum of the internal forces for all three

damping cases are presented in Fig. 14. In this case fre-

quencies higher than 100 Hz could be considered as a

numerical noise. Both damping cases deal with the axial

force rather efficiently, but the damping with α = 0.001

appears to damp the shear force and the bending mo-

ment a bit too much.

This case is the toughest in all respects, as the un-

damped solution gives wrong internal forces. The damped

solutions, on the other hand, return reasonable results

regarding internal forces, but show considerable differ-

ences in the displacements. The difficulties related with
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this problem are due to the monotonically growing stiff-

ness of the system with time (which can clearly be seen

from the undamped solution for strains in Fig. 13), and

coping with such a system is very challenging. Energy

corresponding to high frequency oscillations presents a

lion’s share of total energy, which appears to grow with

time. This presents a problem even for the enery pre-

serving schemes, as the amount of high frequency con-

tent soars, the Newton-Rapshon procedure is bound to

have problems at some point of the analysis. The stiff-

ness of the swinging pendulum case, on the other hand,

exhibited a big jump of stiffness, which remained within

certain bounds (did not increase with time), and was

correspondingly easier to deal with. The reason why the

stiffness of the multibody system grows with time while

the siffness of the swinging pendulum remains within cer-

tain bounds, is purely a consequence of the geometry of

both cases.

4.3 The flying spaghetti [27]

In this numerical example, we consider a flexible beam

with free ends to be a mechanical model of the flying

spaghetti. The beam is initially placed in an inclined

position (Fig. 15). The point force and the torque are

simultaneously applied to one end of the beam for 2.5

s. Once the loads are removed, the beam continues its

free flight. Point B refers to the unloaded end of the

beam, and serves as the observation point. The beam is

modelled by ten finite elements.

P [N]

8

0 2.5 t [s]

T [Nm]

80

0 2.5 t [s]T

P

6 m

8 m

B

Fig. 15 Flying flexible beam. Geometric and loading data.

Other data regarding the numerical example are:

EA = GAS = 10000 N, EI = 100 Nm2,

Aρ = 1 kgm−1, Iρ = 10 kgm, ∆t = 0.1 s.

This case is computed without damping (α = 0),

and with slight damping (α = 0.01, β = 10, γ̃ = δ̃ =

5). The numerical threshold for detection of force and

moment oscillations is set to 0.001 N and 0.00001 Nm,

respectively.

The displacements at point B are presented in Fig.

16. We can see that, similarly as in the case of the swing-

ing pendulum, there is a mild smoothening effect of damp-

ing on the displacements. The principal frequencies of the

response as well as the amplitudes are preserved.

The energy decay is very small relative to the total

energy (Fig. 17), and appears to diminish with the in-

creasing time.

Although the effect on the energy decay was prac-

tically negligible, the effect onto the internal forces is

immense, as can clearly be seen in Fig. 18. The damped

solutions give substantially less oscillating results.
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Fig. 16 Flying spaghetti. Vertical displacements at the free

end of the beam. γ̃ = δ̃ = 5 in the damped case.
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Fig. 17 Flying spaghetti. The effect of damping on energy.

γ̃ = δ̃ = 5 and β = 10 in case with damping.

5 Conclusions

A viscous type damping for introducing the controllable

numerical dissipation of high frequencies in time inte-

gration schemes is enhanced by introducing the idea of

applying the dissipation at places, where it is needed,

and at times when it is needed, as the principal differ-

ence to the usually applied damping schemes. In order

to achieve this, a crucial step is the identification of high

frequency oscillations. This has been resolved by a sim-

ple heuristic identifying algorithm, which monitors the

number of recent sign changes of strain increments. Two

parameters govern the damping : one controls the magni-

tude and the other provides a smooth transition between

the damping phases.

The methodology is applied in conjunction with an

energy conserving formulation for geometrically exact

beams, and the algorithm performs extremelly well. As

demonstrated with several numerically very demanding

cases, it was able to predict accurately the instant, when

damping was required, and to damp out the problem-

atic oscillations, while the small and moderate ones re-

mained unaffected. The frequency spectra also show that

the principal low order frequencies remain unaffected.
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Fig. 5 Swinging pendulum. Magnification of the displacements. β = 100, γ̃ = δ̃ = 5 in cases with damping.
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Fig. 8 Swinging pendulum. Internal forces at Gauss point immediately to the left of point B.
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Fig. 9 Swinging pendulum. Frequency spectrum of internal forces at Gauss point immediately to the left of point B.

β = 100, γ̃ = δ̃ = 5.
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Fig. 14 Multibody system. Frequency spectrum of internal forces at Gauss point immediately to the left of point B.

β = 10, γ̃ = δ̃ = 5.
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Fig. 18 Flying spaghetti. Internal forces at the first Gauss point to the right of point B. γ̃ = δ̃ = 5.


