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Abstract

In this work we derive and mutually compare several 4-node shell hyperelastic finite elements for
large deformation analysis. The elements are based on Reissner-Mindlin shell theory. They use the
enhanced assumed strain (EAS) concept for enhancement of membrane and bending displacement-
compatible strains and the assumed natural strain (ANS) concept for treatment of transverse
shear strains. The elements differ from each other by the number of membrane and bending EAS
parameters. An optimal number of these parameters is suggested on the basis of numerical results.

Key words: shells, finite elements, 4-node element, nonlinear analysis, enhanced assumed strain
method, assumed natural strain method

1 Introduction

The enhanced assumed strain (EAS) method, introduced in [23], [24] has been accepted as a relatively
simple and efficient tool for performance enhancement of lower order finite elements for linear/nonlinear
analysis of solids and structures. The method is closely related to the works on incompatible displace-
ment modes [23].

Since those two initial works many finite elements based on the EAS method have been developed.
As concerning shell formulations, the EAS method has been used in two different manners: (i) to obtain
3d-shell and solid-shell formulations that explicitly account for through-the-thickness stretching, and
(ii) to obtain classical (i.e. Reissner-Mindlin) shell, 3d-shell and solid shell elements with improved
in-plane (membrane) performance. Works that go under (i) employ the EAS method to introduce the
through-the-thickness stretching in order to derive efficient 3d-shell formulations, e.g. [10], [4], [5], [3],
[9], [22], or solid-shell formulations, e.g. [26], [27], [12], [17]. Works that go under (ii) employ the EAS
method to improve the in-plane behavior of 3d-shell or solid-shell elements or the membrane behavior
of classical (Reissner-Mindlin) shell elements, e.g. [1], [6], [11], and some of the above mentioned
3-shell and solid-shell formulations.

In this paper we focus on EAS enhancement of classical (i.e. Reissner-Mindlin) shell formulations.
We are interested in a robust geometrically exact 4-node quadrilateral finite element for nonlinear large
rotation analysis that can give good results for coarse and distorted meshes that can arise e.g. in shape
optimization problems, e.g. [15], [16]. We study two questions: (i) which is an optimal number of EAS
parameters for enhancement of membrane/bending strains for 4-node nonlinear geometrically exact
shell element, and (ii) does an EAS enhancement of bending strains improve performance of that shell
element. The interest for the first question comes from the fact that in the recent literature nonlinear
4-node EAS shell elements appear with 4, 5 or 7 enhancement parameters for the improvement of
membrane performance, see e.g. [6], [3], [5], [20]. It seems that an optimal number of membrane
enhancement parameters has not been considered yet for nonlinear shell elements, although behavior
of linear elements with 4 and 7 membrane enhancement parameters is well documented [1]. The
interest for the second question comes from the fact that the EAS enhancement of classical shell
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formulations has been done exclusively for the membrane strains; there are no formulations avaliable
with enhancement of bending strains. We try to answer the above questions on a basis of numerical
experience, i.e. by comparing results of a set of characteristic numerical examples for several different
membrane/bending EAS formulations. In such a way an optimal number of EAS parameters can be
suggested, leading to a low-order shell finite element that allows for accurate and efficient (with coarse
and distorted meshes) analysis of shell-like structures undergoing large deformations. The treatment
of shear locking problem is in all cases based on the assumed natural strain (ANS) method [2].

As concerning enhancement of the displacement-based strains by using the EAS method, there are
basically two approaches: (i) to express the total strains as an additive sum of the displacement-based
strains and the enhanced strains [23]; (ii) to perform an enhancement of the deformation gradient
[24]. The approach (i) is more suitable for small strain problems because of its additive manner of
strain enhancement, while the approach (ii) is more suitable for large strain problems because of a
multiplicative manner of strain enhancement. In majority of nonlinear shell, 3-d shell and solid-shell
EAS formulations an additive split of strains has been used. This can be justified by the fact that
many shell-like structures may undergo large displacements and large rotations while experiencing
small strains. Some authors, [4], [9], [27], compared formulations (i) and (ii) for 3d-shell and solid-
shell elements and concluded that numerical results based on both approaches are similar for standard
examples. Considering the above, the EAS method with an additive sum of strains can be regarded
as a suitable tool for derivation of nonlinear shell finite elements. In this work we therefore derive
nonlinear shell EAS finite elements with an additive enhancement of strains.

2 Geometrically exact EAS shell formulation

2.1 Geometry, kinematics and strains

We model a shell body as a surface in the 3d space (called midsurface) which has at its every point
attached an unextensible unit vector (called shell director). The position vector to a material point
in the initial (also called undeformed or reference) stress-free shell configuration is then given by

X
¡
ξ1, ξ2, ξ

¢
= ϕ0

¡
ξ1, ξ2

¢
+ ξT

¡
ξ1, ξ2

¢
,

¡
ξ1, ξ2

¢
∈ A, ξ ∈ F (1)

Here ξ1 and ξ2 are convective curvilinear coordinates that parametrize the midsurface ϕ0; A is the
domain of the parametrization; T, kTk = 1, is the shell director that coincides with the normal vector
N of the midsurface; and ξ is through-the-thickness convected coordinate defined in the domain
F = [−h/2, h/2], where h is initial constant shell thickness. In what follows, we always determine the
components of the above vectors with respect to the fixed orthonormal basis ei = ei, i = 1, 2, 3, in
the 3d space, i.e. X = Xiei, ϕ0 = ϕi0ei, T = T iei. We further define the shell director as T = Λ0e3,
where Λ0 is a given (initial) rotation tensor, Λ−10 = ΛT

0 , detΛ0 = 1. If one introduces at a midsurface
point an orthonormal basis bei = bei as be3 ≡ T, the rotation tensor Λ0 at that point can be represented
as Λ0 = [be1,be2,be3] = [be1,be2,T].

It is assumed that the position vector in the deformed configuration is given as

x
¡
ξ1, ξ2, ξ

¢
=
£
ϕ0
¡
ξ1, ξ2

¢
+ u

¡
ξ1, ξ2

¢¤| {z }
ϕ(ξ1,ξ2)

+ ξt
¡
ξ1, ξ2

¢
, ktk = 1 (2)

Here u is the midsurface displacement vector, and t is the shell director at the deformed configuration,
which we choose to be defined by the sequence of two rotations t = Λ0Λe3. The components of newly
defined vectors in (2) are also determined with respect to the fixed orthonormal basis ei, i.e. x = xiei,
ϕ = ϕiei, u = uiei, and t = tiei. The rotation tensor Λ is viewed in this work as a function of
a constrained rotation vector ϑ, i.e. Λ = eΛ (ϑ), [8]. Since the rotation around the shell director
(i.e. drilling rotation) plays no role in the present theory, the constrained rotation vector has only
two components with respect to the orthonormal basis bei, i.e. ϑ = ϑαbeα, α = 1, 2. By using
the Rodrigues formula for the representation of the rotation tensor eΛ (ϑ), one can end up with the
following expression t = Λ0

¡
cosϑe3 +

sinϑ
ϑ ϑ× e3

¢
, ϑ = kϑk.
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The vectors of the convected basis Gi at a point of the shell reference configuration are related to
the position vector X and the convected coordinates ξα, ξ as

Gα =
∂X

∂ξα
=

∂ϕ0
∂ξα

+ ξ
∂T

∂ξα
, G3 =

∂X

∂ξ
= T (3)

Similarly, the vectors of the convected basis gi at the shell deformed configuration are obtained as

gα =
∂x

∂ξα
=

∂ϕ

∂ξα
+ ξ

∂t

∂ξα
, g3 =

∂x

∂ξ
= t (4)

The corresponding dual base vectors Gi and gi are defined through the relationships Gi ·Gj = δji and
gi · gj = δji , where δ

j
i is a Kronecker symbol. Note that G

3 = G3. The identity tensor of the shell
reference configuration (or the shell metric tensor) isG =Gi⊗Gj = GijG

i⊗Gj , where Gij =Gi ·Gj .
The differential volume element is given as dV =

√
Gdξdξ1dξ2, where

√
G =G3 · (G1 ×G2).

The base vectors at the reference midsurface and at the deformed midsurface are obtained by setting
ξ = 0 in (3) and (4), respectively, i.e. Ai =Gi |ξ=0, and ai = gi |ξ=0. For the reference configuration we
have Aα =

∂ϕ0
∂ξα , A3 = T. The corresponding dual base vectors of Ai and ai are given as Ai ·Aj = δji

and ai ·aj = δji , respectively. Note that A
3 = A3. The identity tensor of the shell reference midsurface

(or the midsurface metric tensor) is A = Aα ⊗Aβ = AαβA
α ⊗Aβ, where Aαβ = Aα ·Aβ, and the

differential surface element is given as dA =
√
Adξ1dξ2, where

√
A = |A1 ×A2|. We can further define

a tensor, called shifter, which transforms the base vectors of the midsurface to the base vectors of the
shell body. The shifter from the shell reference configuration, denoted as Z, shifts Ai and Ai (defined
at a midsurface point) to Gi and Gi, respectively, i.e. Gi = ZAi and Gi = Z−TAi. The shifter Z is
defined as Z =Gi⊗Ai = Ai⊗Ai+ ξT,α⊗Aβ = A+ξB, where (◦),α =

∂(◦)
∂ξα , and B is the midsurface

curvature tensor. Note, that A = (Ai)k
¡
Ai
¢
j
ek ⊗ ej = (Ai)k

¡
Ai
¢
k
I = I and Ai ⊗Ai = Aα ⊗Aα.

Having defined base vectors and the shifter, we can proceed with the expression for the deformation
gradient (here we use notation ξ3 = ξ)

F =
∂x

∂X
=

∂x

∂ξi

∙
∂X

∂ξi

¸−1
= gi ⊗Gi (5)

KnowingFwe can obtain the components of the symmetric (displacement-compatible) Green-Lagrange
strain tensor with respect to the convected basis Gi

Eu =
1

2

¡
FTF−G

¢
=
1

2

£¡
Gi ⊗ gi

¢ ¡
gj ⊗Gj

¢
−Gi ·Gj

¡
Gi ⊗Gj

¢¤
(6)

=
1

2
(gi · gj −Gi ·Gj)G

i ⊗Gj = Eu
ijG

i ⊗Gj

By evaluation of dot products gi · gj and Gi ·Gj in (6) one gets the strains Eu
ij varying quadratically

with respect to the ξ coordinate
Eu
ij = εuij + ξκuij + (ξ)

2 ηuij (7)

where εu33 = κu33 = ηuα3 = ηu3α = ηu33 = 0. In this work we will truncate the strains E
u
αβ after the linear

term and the strains Eu
α3 = Eu

3α, after the constant term i.e.

Eu
ij →

½
Eu
αβ → Eu

αβ = εuαβ + ξκuαβ
Eu
α3 → Eu

α3 = εuα3 Eu
3α = Eu

α3

(8)

Expressions for εuαβ, κ
u
αβ and 2ε

u
α3 are the classical expressions for the shell membrane, the shell

bending and the shell transverse shear strains, respectively, which are explicitly given as

εuαβ =
1

2

¡
ϕ,α ·ϕ,β −ϕ0,α ·ϕ0,β

¢
, 2εuα3 = γuα3 = ϕ,α · t− ϕ0,α ·T| {z }

0

(9)

κuαβ =
1

2

¡
ϕ,α · t,β +ϕ,β · t,α −ϕ0,α ·T,β −ϕ0,β ·T,α

¢
= ϕ,α · t,β −ϕ0,α ·T,β
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By using shifter, the strain tensor Eu from (6) can be transformed to the midsurface strain tensor
object bEu as Eu = Z−T bEuZ−1, bEu = Eu

ijA
i ⊗ Aj . According to (8) the strain tensor bEu can be

written as bEu = εuαβA
α ⊗Aβ + εuα3A

α ⊗T+ εu3βT⊗Aβ + ξκuαβA
α ⊗Aβ (10)

The stress tensor, which is conjugated with the Green Lagrange strain tensor Eu , is the second Piola-
Kirchhoff stress tensor S. With respect to the basis Gi it can be expressed as S = SijGi ⊗Gj . By
using shifter, one can have the midsurface stress tensor object bS as S = ZbSZT and bS = SijAi ⊗Aj .

2.2 Variational formulation. EAS functional

The starting point for the enhanced assumed strain (EAS) functional, which will provide basis for our
finite element approximation, is the Hu-Washizu functional

ΠHW

¡
u, t, Eij , S

ij
¢
=

Z
A

Z h/2

−h/2
W (Eij , ◦)μdξdA (11)

+

Z
A

Z h/2

−h/2
Sij

⎛⎜⎜⎝¡εuij + ξκuij
¢| {z }

Eu
ij(u,t)

− (εij + ξκij)| {z }
Eij

⎞⎟⎟⎠μdξdA−Πext

The independent functions in (11) are the midsurface displacement u, the shell director position t, the
strain tensor E and the stress tensor S. The displacement-compatible strain tensor Eu is expressed in
terms of u and t, i.e. Eu = Eu (u, t). The part of the functional, which is related to the prescribed load
(and prescribed displacements and rotations), is also a function of u and t, i.e. Πext = Πext (u, t).
W is the strain energy function that depends on Eij and midsurface geometry (metric tensor A
and curvature tensor B). The integration over the undeformed shell configuration in (11) is divided
into the integration over the shell thickness and the integration over the midsurface

R
V (◦) dV =R

A

R h/2
−h/2 (◦)μdξdA, where μ =

√
G/
√
A and dA =

√
AdA. It can be shown that S · (Eu −E) equals

to bS · ³bEu − bE´.
It is assumed in (11) that the components of bE with respect to the midsurface basis Ai (or

equivalently, components of E with respect to the basis Gi) are Eij = εij + ξκij , i.e. they have the
same form as the displacement-compatible strain components (8). By introducing stress resultants

nij =

Z h/2

−h/2
Sijμdξ, mij =

Z h/2

−h/2
Sijξμdξ (12)

and integrating strain energy function W across the thickness, one can rewrite (11) as

ΠHW

¡
u, t, εij , κij , n

ij ,mij
¢
=

Z
A
W (εij , κij , ◦) dA (13)

−
Z
A
nij
¡
εij − εuij

¢
dA−

Z
A
mij

¡
κij − κuij

¢
dA−Πext

Very often Z is set to A when integrating strain energy function for standard (relatively thin) shells.
This is also the case for a simple strain resultant strain energy function that is used in this work

W =
1

2

Eh

1− ν2
εαβH

αβγδεγδ +
1

2

Eh3

12 (1− ν2)
καβH

αβγδκγδ +
1

2
cGhγα3A

αβγβ3 (14)

Here E is elastic modulus, ν is Poisson’s ratio, G = E
2(1+ν) is shear modulus, c is shear correction

factor, usually set to c = 5/6, Aαβ = Aα ·Aβ, and Hαβγδ = νAαβAγδ+ 1
2 (1− ν)

¡
AαγAβδ +AαδAβγ

¢
.

The crucial part of the enhanced assumed strain (EAS) method is an assumption that the strain
tensor bE is a sum of the displacement-compatible strain tensor bEu, defined above, and an enhancing
strain tensor eE, i.e. bE = bEu+ eE. In practice the enhancement is related to the strain components (9).
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In this work we choose to make an enhancement of the membrane and the bending strain components,
i.e. eE = eεαβAα ⊗Aβ + ξeκαβAα ⊗Aβ (15)

The components of the strain tensor are then

εαβ = εuαβ + eεαβ, καβ = κuαβ + eκαβ, γα3 = γuα3 (16)

By inserting (16) in (13), a new functional is obtained which we call the EAS functional

bΠEAS ¡u, t,eεij , eκij , nij ,mij
¢
=

Z
A
W
¡
εuαβ + eεαβ, κuαβ + eκαβ, γuα3¢ dA− (17)Z

A
nαβeεαβdA− Z

A
mαβeκαβdA−Πext

Introducing the variations for displacement u→ u+ηδu, shell director t (ϑ)→ t (ϑ+ ηδϑ), enhanced
strains eεαβ → eεαβ + ηδeεαβ, eκαβ → eκαβ + ηδeκαβ, and stress resultants nαβ → nαβ + δnαβ, mαβ →
mαβ+ δmαβ into (17), one can obtain the variation of (17) as δbΠEAS = dΠEAS

dη |η=0. At the stationary
point δbΠEAS = 0 the equilibrium and kinematic relations are fulfilled in a weak form.

The next crucial assumption of the EAS method is the enforcement of the following orthogonality
conditions Z

A
nαβeεαβdA = 0, Z

A
mαβeκαβdA = 0 (18)

The orthogonality conditions (18) simplify the EAS functional (17) and its variation δbΠEAS to
ΠEAS (u, t,eεij , eκij) = Z

A
W
¡
εuαβ + eεαβ, κuαβ + eκαβ, γuα3¢ dA−Πext (19)

δΠEAS (u, t,eεij , eκij ; δu, δt, δeεij , δeκij) (20)

=

Z
A

∙
∂W

∂εαβ

¡
δεuαβ + δeεαβ¢+ ∂W

∂καβ

¡
δκuαβ + δeκαβ¢+ qαδγuα3

¸
dA− δΠext

where we defined the transverse shear forces as qα = ∂W
∂γα3

and δΠext = d
dηΠext(u+ηδu, t (ϑ+ ηδϑ)) |η=0.

Note, that by enforcement of (18) we lose the device to obtain stress resultants nαβ and mαβ, while
the transverse shear stress resultants can be obtained through constitutive equation as qα = ∂W

∂γα3
.

By further introducing variation of (9) into (20), we can write δΠEAS as (δϕ ≡ δu, see (2))

δΠEAS =

Z
A

⎡⎢⎣
∂W
∂εαβ

£
1
2

¡
δϕ,α ·ϕ,β +ϕ,α · δϕ,β

¢
+ δeεαβ¤+

∂W
∂καβ

¡
δϕ,α · t,β +ϕ,α · δt,β + δeκαβ¢+
qα
¡
δϕ,α · t+ϕ,α · δt

¢
⎤⎥⎦ dA− δΠext (21)

where δt = d
dη t (ϑ+ ηδϑ) |η=0 or δt = Hδϑ. Explicit form of H can be found in [7], [8], [13].

In solving equations (21) by the Newton iterative method, one makes use of the linearized form of
(21), given as

Lin [δΠEAS (·)] = δΠEAS (·) +∆δΠEAS (·) = 0 (22)

Linearization of δΠEAS at certain (fixed) values of u,ϑ, eεαβ and eκαβ can be obtained in the following
way. First we introduce the incrementation for the displacement u → u + η∆u, the shell director
t (ϑ) → t (ϑ+ η∆ϑ), the variation of the shell director δt → δt (δϑ,ϑ+ η∆ϑ), and the enhanced
strains eεαβ → eεαβ + η∆eεαβ, eκαβ → eκαβ + η∆eκαβ into (21). Then we obtain ∆δΠEAS = dδΠEAS

dη |η=0.
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2.3 Finite element approximation

Let the initial shell midsurface A be discretized by nel nonoverlaping elements with nen nodes such

that A ≈
nelS
e=1

Ae. Over the element domain Ae the initial shell configuration (the midsurface and the

shell director) are interpolated as

ϕ0
¡
ξ1, ξ2

¢
=

nenX
a=1

Na

¡
ξ1, ξ2

¢
ϕ0a, T

¡
ξ1, ξ2

¢
=

nenX
a=1

Na

¡
ξ1, ξ2

¢
Ta (23)

where (◦)a are the corresponding nodal values. In this work we choose nen = 4 and the bi-linear shape
functions Na

¡
ξ1, ξ2

¢
, defined over the square domain Ae = [−1, 1]× [−1, 1]. Note, that Ta is chosen to

coincide with the normal vector to a given shell midsurface at that nodal point. However, due to the
bi-linear interpolation (23) T is only approximately perpendicular to the base vectors Aα = ∂ϕ0/∂ξ

α.
The interpolation of the shell deformed configuration ϕ, t is performed in a similar fashion as ϕ0, T.
The virtual quantities δϕ and δt are interpolated in the same manner as ϕ and t. Derivations of ϕ,
t, δϕ and δt with respect to ξα coordinates are obtained trivially. Linearization of ϕ, t, δϕ and δt
with respect to nodal values leads to

∆ϕ
¡
ξ1, ξ2

¢
=

nenX
a=1

Na

¡
ξ1, ξ2

¢
∆ϕa, ∆t

¡
ξ1, ξ2

¢
=

nenX
a=1

Na

¡
ξ1, ξ2

¢
∆ta

∆δt
¡
ξ1, ξ2

¢
=

nenX
a=1

Na

¡
ξ1, ξ2

¢
∆δta (24)

We note that ∆δϕa = 0, and ∆δta =
d
dη δta (δϑa,ϑa + η∆ϑa) |η=0 = δϑT

a Sa∆ϑa; see [7], [8], [13] for
an explicit form of Sa. Due to the above interpolations the linearization and the discretization are
interchangeable. For that reason we can directly use (23)-(24) in (21) and (22) to obtain a system of
finite element nonlinear equations and the corresponding finite element tangent stiffness matrix.

We can now proceed with the interpolation of the enhancing strains. Let eΞmαβ and eΞbαβ be the
enhancing membrane and the enhancing bending strains, which we choose to be defined with respect
to the basis Aα

0 at ξ
1 = ξ2 = 0. The choice of the constant element base is necessary in order to derive

shell elements that are able to pass the patch test. Those strains can be transformed to eεαβ and eκαβ
strains from (15) through relations

eΞmγδAγ
0 ⊗Aδ

0 = eεαβAα ⊗Aβ, eΞbγδAγ
0 ⊗Aδ

0 = eκαβAα ⊗Aβ (25)

which lead to the transformation relations

eεαβ = (Aα ·Aγ
0)
eΞmγδ ³Aβ ·Aδ

0

´
, eκαβ = (Aα ·Aγ

0)
eΞbγδ ³Aβ ·Aδ

0

´
(26)

Let us now write the strains eεαβ and eκαβ as scalar products of two vectors, i.e.eεαβ = Gαβ ·α, eκαβ = Gαβ · β (27)

Vectors Gαβ include enhancing strains interpolation functions and transformation terms from (26),
while vectors α and β define parameters of enhancing strains. Explicit forms of those vectors will be
discussed below in the next section. By introducing variations α→ α+ ηδα and β → β + ηδβ, one
can obtain the variation of (27) as δeεαβ = d

dηeεαβ (α+ ηδα) |η=0 and δeκαβ = d
dηeκαβ (β + ηδβ) |η=0,

which leads to δeεαβ = Gαβ · δα, δeκαβ = Gαβ · δβ. Similarly, ∆eεαβ = Gαβ ·∆α and ∆eκαβ = Gαβ ·∆β.
One can now introduce the above interpolations into (21) in order to get a system of nonlinear

equations. Each nodal or element variation defines one nonlinear equation. We get

δΠEAS = δϕa ·
Z
Ae

∙
∂W

∂εαβ

∙
1

2

¡
Na,αϕ,β +Na,βϕ,α

¢¸
+

∂W

∂καβ
(Na,αt,β) + qα (Na,αt)

¸
dAe +

δta ·
Z
Ae

∙
∂W

∂καβ

¡
Na,βϕ,α

¢
+ qα

¡
Naϕ,α

¢¸
dAe + (28)

δα ·
Z
Ae

∙
Gαβ

∂W

∂εαβ

¸
dAe + δβ ·

Z
Ae

∙
Gαβ

∂W

∂καβ

¸
dAe − δΠext = 0
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By defining δxa =
£
δϕT

a , δt
T
a

¤T
and δbα = £δαT , δβT

¤T
, eq. (28) can be written as

δΠEAS = δxa · fa,int + δbα · fEAS − δxa · fa,ext| {z }
δΠext

= 0 (29)

Linearization of δΠEAS (28) can be obtained by introducing the above interpolations into ∆δΠEAS ,
see (22). One gets

δxTaKab∆xb =

Z
Ae

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δϕa · 12
¡
Na,αϕ,β +Na,βϕ,α

¢
∂2W

∂εαβ∂εγδ
1
2

¡
Nb,γϕ,δ +Nb,δϕ,γ

¢
·∆ϕb

δϕa · (Na,αt,β)
∂2W

∂καβ∂κγδ

£
(Nb,γt,δ) ·∆ϕb +

¡
Nb,δϕ,γ

¢
·∆tb

¤
+

δta ·
¡
Na,βϕ,α

¢
∂2W

∂καβ∂κγδ

£
(Nb,γt,δ) ·∆ϕb +

¡
Nb,δϕ,γ

¢
·∆tb

¤
+

δϕa · (Na,αt)
∂2W

∂γα3∂γβ3

£
(Nb,βt) ·∆ϕb +

¡
Nbϕ,β

¢
·∆tb

¤
+

δta ·
¡
Naϕ,α

¢
∂2W

∂γα3∂γβ3

£
(Nb,βt) ·∆ϕb +

¡
Nbϕ,β

¢
·∆tb

¤

⎤⎥⎥⎥⎥⎥⎥⎥⎦
dAe +(30)

Z
Ae

⎡⎢⎣
∂W
∂εαβ

1
2 [δϕa · (Na,αNb,β)∆ϕb + δϕa · (Na,βNb,α)∆ϕb)]+

∂W
∂καβ

¡
δϕa · (Na,αNb,β)∆tb + δta · (Na,βNb,α)∆ϕb +Nb,βϕ,α ·∆δtb

¢
+

qα
¡
δϕa · (Na,αNb)∆tb +Nbϕ,α ·∆δtb

¢
⎤⎥⎦ dAe

δbαTHb∆xb =

Z
Ae

"
δα · Gαβ ∂2W

∂εαβ∂εγδ
1
2

¡
Nb,γϕ,δ +Nb,δϕ,γ

¢
·∆ϕb+

δβ · Gαβ ∂2W
∂καβ∂κγδ

£
(Nb,γt,δ) ·∆ϕb +

¡
Nb,δϕ,γ

¢
·∆tb

¤ # dAe

δxTaHa∆bα =

Z
Ae

"
δϕa · 12

¡
Na,αϕ,β +Na,βϕ,α

¢
∂2W

∂εαβ∂εγδ
Gγδ ·∆α+£

δϕa · (Na,αt,β) + δta ·
¡
Na,βϕ,α

¢¤
∂2W

∂καβ∂κγδ
Gγδ ·∆β

#
dAe (31)

δbαTD∆bα =

Z
Ae

∙
δα · Gαβ

∂2W

∂εαβ∂εγδ
Gγδ ·∆α+ δβ · Gαβ

∂2W

∂καβ∂κγδ
Gγδ ·∆β

¸
dAe

where ∆xb =
£
∆ϕT

b ,∆t
T
b

¤T and ∆bα = £∆αT ,∆βT
¤T
. From the first integral in (30) and the integrals

in (31) the material part of the tangent stiffness matrix arises, while from the second integral in (30)
one can get the geometric part of the tangent stiffness matrix. We note that the enhancement of
strains influences only the material part, while the geometric part remains unchanged.

Discretized form of equation (22) now turns, for one element (e), into the following system of
equations ∙

K(e) H(e)

H(e)T D(e)

¸½
∆x(e)

∆bα(e)
¾
=

(
f
(e)
ext − f

(e)
int

−f (e)EAS

)
(32)

where

K(e) = [Kab] , H(e) = {Ha}T , ∆x(e) =
©
∆xTa

ªT
, f

(e)
ext =

©
fTa,ext

ªT
, f

(e)
int =

©
fTa,int

ªT
(33)

Note that ∆bα(e) = ∆bα, and that f (e)EAS follows from (28). Explicit forms of Kab, D(e) and Ha = H
T
a

follow from (30) and (31). If enhancing strains are chosen to be discontinuous across the element
boundaries, it is possible to eliminate the EAS parameters on the element level, before assembling the
element matrices into the global matrices. From (32) one gets

∆bα(e) = −D(e)−1
³
H(e)T∆x(e) + f

(e)
EAS

´
(34)

By substituting (34) into (32) we obtain the following equations³
K(e) −H(e)D(e)−1H(e)T

´
∆x(e) = f

(e)
ext − f

(e)
int +H

(e)D(e)−1f (e)EAS (35)

From (35) follows the condensed symmetric tangent element stiffness matrix and the element residuals
vector

k
(e)
T = K(e) −H(e)D(e)−1H(e)T , r(e) =

n
f
(e)
ext − f

(e)
int +H

(e)D(e)−1f (e)EAS

o
(36)

Assembly of the element stiffness matrices KT =
Vnel
e=1 k

(e)
T and the element residual vectors R =Vnel

e=1 r
(e) leads to the global system of equations KT∆x = R, where ∆x =

Vnel
e=1∆x

(e) and
Vnel
e=1 is

the assembly operator.
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3 Derived 4-node EAS-ANS shell elements

It can be seen from (21) that the enhancing strains can be interpolated element-wise, since the variation
of EAS functional is free of derivatives of enhancing strains. Prior of choosing interpolation for the
enhancing strains, one has to take a look at the displacement-compatible strains, since the enhancing
strains should both enrich and decompose the displacement-compatible strains. For 4-node element
(nen = 4) the displacement-compatible membrane and bending strains, εuαβ and κuαβ respectively,
involve the following functions in the finite element bi-unit space Ae = [−1, 1]× [−1, 1]

[εu11, ε
u
22, 2ε

u
12]

T ∈ spanY, [κu11, κ
u
22, 2κ

u
12]

T ∈ spanY (37)

where

Y =

⎡⎢⎣ 1 0 0 ξ2 0 0 0
¡
ξ2
¢2

0 0

0 1 0 0 ξ1 0 0 0
¡
ξ1
¢2

0
0 0 1 0 0 ξ1 ξ2 0 0 ξ1ξ2

⎤⎥⎦ (38)

The enhancing strains are then chosen on the basis of (38).
Let us now rearrange the enhancing strains introduced in (25) in the following two vectors

eΞm = heΞm11, eΞm22, 2eΞm12iT eΞb = heΞb11, eΞb22, 2eΞb12iT (39)

Then we can write the enhancing membrane and bending strains in the finite element bi-unit space
Ae as eΞm = Γmα eΞb = Γbβ (40)

where α and β are the vectors that were already introduced in (25). They contain enhancing membrane
strain parameters and enhancing bending parameters. Matrices Γm and Γb consist of interpolation
functions for those parameters. We consider the following three possibilities:

(a) with 4 enhancing parameters for the membrane and 4 for the bending strains leading to

α = [α1, α2, α3, α4]
T

β = [β1, β2, β3, β4]
T , Γm = Γb =

1√
A

⎡⎣ ξ1 0 0 0
0 ξ2 0 0
0 0 ξ1 ξ2

⎤⎦ (41)

(b) with 5 enhancing parameters for the membrane and 5 for the bending strains leading to

α = [α1, α2, α3, α4, α5]
T

β = [β1, β2, β3, β4, β5]
T , Γm = Γb =

1√
A

⎡⎣ ξ1 0 0 0
0 ξ2 0 0
0 0 ξ1 ξ2

0
0

ξ1ξ2

⎤⎦ (42)

(c) with 7 enhancing parameters for the membrane and 7 for the bending strains leading to

α = [α1, α2, α3, α4, α5, α6, α7]
T

β = [β1, β2, β3, β4, β5, β6, β7]
T , Γm = Γb =

1√
A

⎡⎣ ξ1 0 0 0
0 ξ2 0 0
0 0 ξ1 ξ2

ξ1ξ2 0 0
0 ξ1ξ2 0
0 0 ξ1ξ2

⎤⎦ (43)

The transformation of the eΞmαβ and eΞbαβ strains to the eεαβ and eκαβ strains is obtained by using
(26). By defining vectors

eε = [eε11,eε22, 2eε12]T eκ = [eκ11, eκ22, 2eκ12]T (44)

the following matrix, see (26), can be obtained for the transformation of (39) into (44)

T =

⎡⎢⎣
¡
c11
¢2 ¡

c21
¢2

2c11c
2
1¡

c12
¢2 ¡

c22
¢2

2c12c
2
2

2c12c
1
1 2c21c

2
2 2c11c

2
2 + 2c

2
1c
1
2

⎤⎥⎦ (45)

where cγα = Aα ·Aγ
0 . Finally, the enhancing strains can be given as
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eε = TeΞm = TΓmα = £ GT11 GT22 2GT12
¤T
α, eκ = TeΞb = TΓbβ = £ GT11 GT22 2GT12

¤T
β (46)

where [G11,G22,G12 = G21] = (TΓm)T =
¡
TΓb

¢T
.

Having defined interpolation of the enhancing strains, we proceed with the membrane forces and
the bending moments. They can be defined with respect to the basis Aα or to the basis A0,α at
ξ1 = ξ2 = 0, i.e.

nαβAα ⊗Aβ = NαβA0,α ⊗A0,β, mαβAα ⊗Aβ =MαβA0,α ⊗A0,β (47)

From (47) the following rule is obtained for the transformation between the components

nαβ = (Aα ·A0,γ)Nγδ
³
Aβ ·A0,δ

´
, mαβ = (Aα ·A0,γ)Mγδ

³
Aβ ·A0,δ

´
(48)

It can be now seen that the orthogonality condition (18)1 is satisfied for constant forces Nαβ,since one
can have from (48) and (26)

nαβeεαβdA = NγδeΞmγδAγ,T
0 (Aα ⊗Aα)A0,γA

δ,T
0

³
Aβ ⊗Aβ

´
A0,δ

= NγδeΞmγδ (Aγ
0 ·A0,γ)

³
Aδ
0 ·A0,δ

´
= NγδeΞmγδ (49)

and, therefore,Z
Ae

nαβeεαβdA =

Z
Ae

nαβeεαβ√Adξ1dξ2 = Z
Ae

NαβeΞmαβ√Adξ1dξ2 = Nαβ

Z
Ae

eΞmαβ√Adξ1dξ2
= NT

0

Z
Ae

eΞm√Adξ1dξ2 = NT
0

µZ
Ae

Γm
√
Adξ1dξ2

¶
| {z }

0, see (41)-(43)

α = 0 (50)

where NT
0 =

£
N11, N22, N12

¤
. Similar expression can be obtained for the orthogonality condition

(18)2 and constant moments MT
0 =

£
M11,M22,M12

¤
. Thus, the orthogonality conditions (18) hold

at least for constant membrane forces and bending moments. Therefore, the elements which define
enhancing strains in a manner (41)-(43) pass the patch test. To fully satisfy orthogonality conditions
(18) one should also carefully design the interpolation of stress resultants. However, one can choose a
partial satisfaction of orthogonality conditions in the sense of (50), which does not force interpolation
of stress resultants. As a consequence a device to compute stress resultants is lost. For postprocessing
purposes the stress resultants are usually approximated as nαβ ≈ ∂W

∂εαβ
and mαβ ≈ ∂W

∂καβ
. Such an

approach is also taken in this paper.
To avoid the transverse shear locking, the ANS concept is chosen. The transverse shear strain

field over the 4-node shell element is given by ANS interpolation [2]. The transverse shear strains are
evaluated, using (9)2, only at element edge mid-points A, B, C and D, where ϕI

0 =
1
2 (ϕ0J +ϕ0K),

see (23), where I = A,B,C,D, J = 1, 2, 3, 4 and K = 2, 3, 4, 1. The interpolation across the element
is further given as

γ13 =
1

2

¡
1− ξ2

¢
γA13 +

1

2

¡
1 + ξ2

¢
γC13, γ23 =

1

2

¡
1− ξ1

¢
γD23 +

1

2

¡
1 + ξ1

¢
γB23 (51)

4 Numerical examples

The computer implementation of the elements from Table 1 is in accordance with the above derivation,
except that the local Cartesian frames are introduced at the integration points to simplify implemen-
tation. The computer codes were generated by using symbolic code manipulation program AceGen
[19], [18]. Those codes were introduced into the finite element analysis program AceFEM [19].
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4.1 Path-independence test

In this example we test the derived nonlinear elastic shell elements for path-independency. The test is
similar to that presented in Jabareen and Rubin [14] for nonlinear elastic solid elements. We consider a
single square shell element with side length a = 10, thickness h = 0.01, and material constants E = 104,
ν = 0.3. It has two nodes fixed (both displacements and rotations are restrained), one node is free, and
displacements of one node (labeled as 1) are prescribed. The node 1 is translated sequentually on 6
straight line segments (see Fig. 1). Displacements at the points A to F are defined as u1A = [0, 0, β]

T ,
u1B = [0,−β, β]T , u1C = [β,−β, β]T , u1D = [β,−β, 0]T , u1E = [β, 0, 0]T , u1F = [0, 0, 0]T , where
β = 5. Each segmental translation was analyzed by using 100 increments. One can calculate the total
external work done on the element at a certain pseudo-time t asW =

R t
0 f1·u̇1dt, where f1 is the external

nodal force applied to node 1. The integral was calculated for the path ABC (one half of the cycle) and
for the path ABCDEF (full cycle) by using trapezoidal integration rule. The corresponding external
work is denoted asWABC andWABCDEF , respectively. For hyperelastic elements the work of one cycle
should be theoretically zero. Negative values would indicate that the element has generated energy,
whereas positive values would indicate that the element has dissipated energy. Since the numerical
error is always present the error of one cycle is defined as E = WABCDEF /WABC to diminish its
influence. The results in Table 2 indicate that all considered elements behave correctly and produce
hyperelastic path-independent response.

4.2 Twisted beam

The twisted beam is clamped at one end and subjected to point forces at the middle of the other end,
Fig 2. The twist angle is a linear function of x with value 0 at the clamped end and π/2 at the free
end. Linear analysis is performed for forces Fx = Fz = 0, Fy = 1 and for two different thicknesses:
h = 0.32 (data A) and h = 0.05 (data B). The remaining geometric, material and load characteristics
are: width w = 1.1, length l = 12, and E = 29×106, ν = 0.22. Analytical value of displacement under
the force in the y direction is 0.00174274 (data A), see [28], and 0.3427 (data B), see [21]. Normalized
value of this displacement (with respect to analytical solution) is for derived elements presented in
Table 3. It shows that M and MB elements give much better results that ANS element, and that the
number of membrane and bending enhancing parameters practically does not influence the results.
For nonlinear analysis data C is used: w = 4.4, l = 12, h = 0.0032, E = 29×106, ν = 0.22, Fig 2. The
final values of applied forces are Fx = 0, Fy = Fz = 0.04. The displacement (in y direction) of the
point of application of forces is presented in Fig. 3 as function of forces Fy and Fz. Similar conclusion
as for the linear case can be made: M and MB elements give different results that ANS element (at
the final load level the displacement of enhanced elements is approximately 4 times bigger then the
displacement of ANS element), and the number of membrane and bending enhancing parameters is
not important for this example.

4.3 Curved twisted beam

The curved twisted beam is clamped at one end and subjected to point forces at the middle of the
other end, Fig. 4. The twist angle is a linear function of the arc-length s with value 0 at the clamped
end and π/2 at the free end. Linear analysis is performed for width w = 1.1, radius R = 5, thickness
h = 0.32, material constants E = 29 × 106, ν = 0.22, and Fx = Fy = 0, Fz = 1. Analytical
solution for displacement under the force in z direction is 0.00626901, see [28]. Normalized value of
this displacement (with respect to the analytical solution) is for derived elements presented in Table
4. It can be seen that the number of enhancing parameters has only marginal influence on results.
For nonlinear analysis the following data is used w = 4.4, R = 5, h = 0.32, Fig. 4. The final value
of forces are Fx = Fy = 15 × 103, Fz = 0. The load factor versus displacement curves are given in
Fig. 5 for 2× 10 mesh. The curves of M and MB elements do not coincide with each other (as in the
twisted beam example), although the difference between the minimum (M4) and the maximum (MB5)
displacement at the final load level is rather small; around 3%. It is interesting to note that the ANS
element is not exhibiting different behavior trend then M and MB elements, which is in contrast with
the twisted beam example.
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4.4 Half-sphere with a hole

This popular example is illustrated in Fig. 6 The data is: radius r = 10, thickness h = 0.04,
E = 6.825 × 107, ν = 0.3, and the angle of the hole α = 18o. The results are presented in Fig. 7
(for 8× 8 mesh) and Table 5. Considerable difference in results can be seen between ANS elements,
M4 and MB4 elements on one hand and all the other elements on the other hand. It is interesting
to see that M4 and MB4 elements show only small improvement with respect to the ANS elements,
while others enhanced elements give considerably better results; see Table 5 where present results are
compared with those reported in [25]. This may be due to the fact that the elements of the mesh are
not planar; they are slightly warped. The interpolation of the enhanced in-plane shear thus becomes
important. This example shows that 4 membrane enhancing parameters are sometimes not enough to
improve the behavior of ANS elements. At least 5 membrane enhancing parameters are needed. On
the other hand an inclusion of the bending parameters has, for this particular example, no effect in
improvement of element performance.

4.5 Cylinder with free ends

A cylinder with length L = 10.35, radius r = 4.953, thickness h = 0.094, elastic modulus E = 1.05 104

and Poisson’s ratio ν = 0.3125 is pinched by two radially pulling forces P as shown in Fig. 8. Both ends
of the cylinder are free. One quarter of the cylinder is discretized and the corresponding symmetry
is taken into account. Two meshes, 4× 16 and 8× 32, are used. The meshes are structured and the
elements are unwarped. The results are shown in Figs. 9 - 11, which present radial displacement
of points A and B with respect to the magnitude of the applied forces. Results of M elements are
compared in Figure 9, which shows that M4, M5 and M7 give practically identical results. Results of
M and MB elements are compared in Figure 10, which again shows that MB4, MB5 and MB7 give
almost identical results that are slightly different from those of M4, M5 and M7. Thus, in this example
the bending enhancement parameters do have some (although small) influence on results. Finally, M5
and MB5 are compared in Fig. 11 for both meshes. For the finer mesh the difference between M5 and
MB5 elements becomes negligible. We can conclude from this example that all M elements behave in a
similar manner, that all MB elements behave in a similar manner, and that there is a small difference
between results of M and MB elements for coarse meshes.

4.6 Cylinder with end diaphragms

The cylinder with radius R = 100, length L = 200, thickness h = 1, E = 3 × 104, ν = 0.3 has a
rigid diaphragm at each end. Two radially pushing forces are acting at two points in the middle of
the cylinder, see Fig. 12. The 8 × 16 mesh was used to discretize one quarter of the cylinder. The
results are shown in Fig. 13. Several different curves are obtained, with M5 and M7 giving a single
curve, and MB5 and MB7 giving another single curve. Several snap-throughs can be observed that are
false and appear as a consequence of coarse mesh. Strain enhancement is unable to improve such false
behavior, which is obvious, since strain enhancement is done only element-wise. On the other hand,
the finer mesh 32× 72 (not shown in figures) leads to one response curve for all elements and removes
false buckling points in load-displacement curves. This example shows that a phenomena related to
a coarse mesh, like e.g. false snap-through, cannot be avoided by using enhanced strain elements. It
can be seen again from this example that for coarse meshes the bending enhancement parameters can
have some, but rather small, influence on results.

5 Concluding remarks

In this work we derived several 4-node hyperelastic shell elements based on enhanced assumed strain
(EAS) method (based on Green-Lagrange strains) and on assumed natural strain (ANS) method. The
elements differ from each other on the number of the enhancing membrane and bending parameters.
The elements are able to produce hyperelastic path-independent response. It can be conclude from
the numerical examples that 4 membrane enhancing parameters are sometimes not enough to improve
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performance of the standard ANS element, and that 7 membrane enhancing parameters are too many.
It therefore seems that the optimal number of membrane enhancing parameters is 5. We can also
conclude that an influence of the bending enhancement parameters on element performance is rather
small.

We agree with the reviewer’s remark that the above conclusions hold for isotropic elastic material
models. For layered composite shells or for inelastic material models the influence of the membrane
and bending EAS parameters on the computed response could have different character.
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Table 1: Derived EAS-ANS shell elements
Element No. of membrane EAS parameters No. of bending EAS parameters ANS concept
ANS 0 0 Yes
M4 4 0 Yes
MB4 4 4 Yes
M5 5 0 Yes
MB5 5 5 Yes
M7 7 0 Yes
MB7 7 7 Yes

Table 2: Path-independence test: Error in the external work on a closed cycle
Element ANS M4 MB4 M5 MB5 M7 MB7
WABC 281.218 258.676 258.676 258.350 258.350 258.350 258.350

E × 10−6 1.45657 −7.46430 −7.46431 −6.29626 −6.29627 −6.29626 −6.29627

Table 3: Twisted beam.
Linear analysis. Normalized displacement under the force in y direction
Element ANS M4 MB4 M5 MB5 M7 MB7
2× 6 (data A) 0.805484 0.955530 0.955587 0.955536 0.955593 0.955536 0.955593

2× 6 (data B) 0.929200 0.933642 0.933723 0.933840 0.933919 0.933840 0.933919

Table 4: Curved twisted beam.
Linear analysis. Normalized displacement under the force in z direction
Element ANS M4 MB4 M5 MB5 M7 MB7
2× 8 0.811193 0.837923 0.841945 0.838794 0.848457 0.838801 0.853834

4× 12 0.894533 0.911465 0.914031 0.909376 0.914914 0.909376 0.917850

6× 24 0.935155 0.941046 0.941106 0.939557 0.941211 0.939557 0.942801

Table 5: Half-sphere with a hole.
Radial displacements of points A and B at F/2 = 100. Mesh is 8×8 for one quarter of half-sphere
Element ANS M4 MB4 M5 MB5 M7 MB7 [25] (16× 16)

UA 2.871 2.894 2.898 3.181 3.185 3.181 3.185 3.406

−UB 4.599 4.670 4.675 5.453 5.461 5.453 5.461 5.902
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Figure 1: Path-independence test: Node 1 displacement path.
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Figure 2: Twisted beam: (a) linear example, (b) nonlinear example, (c) deformed mesh for nonlinear
example (M7) at Fy = Fz = 0.036 (mesh is 2× 6)
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Figure 3: Twisted beam: Mesh is 2 × 6. Forces Fx and Fz versus y displacement of point under the
forces
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Figure 4: Curved twisted beam: (a) linear example, (b) initial and deformed mesh for nonlinear
example (MB7, load factor is 1)
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Figure 5: Curved twisted beam: Load factor versus z displacement curves. Mesh is 2× 10
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Figure 8: Cylinder with free ends subjected to radial pulling forces: (a) deformed 8×32 mesh (M5) at
radial displacement of point A equal to 2.8, (b) problem description, (c) deformed 4× 16 mesh (M5)
at radial displacement of point A equal to 2.8
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Figure 9: Cylinder with free ends: Load-displacement curves for points A and B; M elements; mesh
is 4× 16.
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Figure 10: Cylinder with free ends: Load-displacement curves for points A and B; M and MB elements;
mesh is 4× 16.
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Figure 11: Cylinder with free ends: Load-displacement curves for points A and B; M and MB elements;
meshes are 4× 16 and 8× 32 (fine).
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Figure 12: Cylinder with end diafragms: (a) deformed configuration (M5) for 8 × 16 mesh at radial
displacement of point A equal to 0.45r, (b) problem description, (c) deformed configuration (M5) for
32× 72 mesh at radial displacement of point A equal to 0.6r,
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Figure 13: Cylinder with end diaphragms: Load-displacement curves for point A; mesh is 8× 16.

19


