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On Boundary Layer in the Mindlin Plate Model: Levy Plates 
 

Boštjan Brank 

University of Ljubljana, Faculty of Civil and Geodetic Engineering 
Jamova 2, 1000 Ljubljana, Slovenia, e-mail: bbrank@ikpir.fgg.uni-lj.si 

 

Abstract 

This work is related to the bending problem of thick rectangular Levy plates. Series solution for the 
Mindlin (thick) plate model is obtained and represented as a sum of the Kirchhoff (thin) plate 
model solution, the “shear terms” and the “boundary layer terms”. Hard- and soft-simple 
supported, hard- and soft-clamped and free boundary conditions are considered. In order to detect 
plate regions where Kirchhoff model is good enough, and plate regions where Mindlin model 
should be used, a model error indicator is introduced. Several examples are presented, illustrating 
the difference between the Mindlin and the Kirchhoff results, the strengths of boundary layers for 
different boundary conditions, accuracy of several possible model error indicators and dependence 
of results on plate thickness. 
 
Keywords: Plates, Mindlin plate theory, Kirchhoff plate theory, Levy plates, Boundary layer, 
Model error indicator 
 

1. Introduction 
The bending of plates has been modeled by different theories, which may lead to different solutions, 
depending on the model used. The most common plate models are the Kirchhoff model and the 
Mindlin model. The latter is very often referred to as the Reissner-Mindlin one, although the Reissner 
and the Mindlin models are somewhat different; see e.g. Wang et al. [1].  

It is known that the Mindlin solution of the plate problem is very sensitive to the boundary 
conditions in the neighborhood of the boundary; the solution may vary sharply in the edge-zone. This 
is called plate boundary layer or plate edge effect, and has been analyzed and discussed by Arnold and 
Falk [2], [3], Häggblad and Bathe [4] and Babuška and Li [5].  The solution of the Kirchhoff model 
has no boundary layer. Babuška and Li [5] showed that the boundary layer is present in the solution of 
the three-dimensional formulation. It therefore corresponds to the physical phenomenon. Arnold and 
Falk [2], [3] presented a theory for a rigorous analysis of the boundary layer of the Mindlin solution 
for plates with smooth boundary. The strengths of the boundary layers were found for different 
boundary conditions for rotations and stress resultants. They illustrated the theory by analyzing the 
exact solution of a circular and semi-infinite plate with different support conditions. Häggblad and 
Bathe [4] extended their work to boundary layers near a corner and made comparison of theoretical 
and numerical results by means of an accurate high-order plate element. Babuška and Li [5] analyzed 
how well the Mindlin model approximates the three-dimensional formulation. They showed that the 
quality of the Mindlin solution (with respect to the three-dimensional solution) in the neighborhood of 
the plate boundary strongly depends on the type of the plate boundary conditions.  

The first aim of this work is to discuss the edge effects in the Mindlin solution for rectangular 
plates with two opposite edges hard-simply supported and the remaining two edges arbitrarily 
supported (e.g. hard-simple supported, soft-simple supported, hard-clamped, soft-clamped or free). 
Such plates are usually called Levy plates. We derive analytical (series) Mindlin solution for Levy 
plates, and further show that it can be represented as the sum of the corresponding Kirchhoff solution, 
the “shear terms” and the “boundary layer terms”. So obtained Mindlin solution is then used to study 
and illustrate edge effects in rectangular plates for different boundary conditions. 

We note that there are several ways to obtain closed or approximate analytical solution for 
rectangular plates, see e.g. Naumenko et al. [11] for a review on this topic or Nosier et al. [12] for a 
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series solution. Here we exploit an approach of Lee at al. [13], Reddy and Wang [14] and Lim and 
Reddy [15], who derived algebraic relationships between the solutions of Mindlin and Kirchhoff plate 
models. In contrast with the above mentioned works we also consider soft-simply supported and soft-
clamped boundary conditions.  

Mindlin-theory-based finite elements are very often used for approximate (numerical) analysis 
of plates. They can effectively approximate the “shear part” of the analytical solution, but they 
typically have problems to detect the “boundary layer part”. Adaptive finite element analysis is needed 
to make the boundary layer effect visible, see e.g. Selman et al. [6], Lee and Hobbs [7] and Cho and 
Oden [8]. In conjunction with the mesh refinement algorithm, a (mesh) discretization error 
indicator/estimator, which is oriented towards capturing the boundary layer effect, has to be used. We 
note, that the analytical Mindlin solutions, presented in this paper, can be used to estimate 
performance of any (mesh) discretization error indicator related to the mesh of Mindlin-theory based 
finite elements; see e.g. Boisse et al. [19], Benoit et al. [20] for examples of discretization error 
indicators. 

The second aim of this work is related to the model error indicator, which is another source of 
error in the computational (numerical) plate model. It is far more difficult to estimate than the 
discretization error, see e.g. Stein et al. [10], Bohinc et al. [9]. It is related to the suitability of the 
mathematical model chosen for the plate analysis. With the analytical solutions for Kirchhoff and 
Mindlin models available, a suitable model error indicator for the Kirchhoff model can be suggested. 
We would like to have one that is simple enough as well as sensitive enough to detect the shear layers 
in plate as well as the edge effects. Having this in mind, we suggest and mutually compare several 
model error indicators, which have a potential to detect plate regions where Kirchhoff model is fine 
enough and plate regions where more refined Mindlin model should be used.  

The paper is organized as follows. In section 2 we present basic equations of Kirchhoff and 
Mindlin plate models and algebraic relationship between those two models. We further recall basic 
results of theoretical edge effect analysis for Mindlin model and discuss several possible model error 
indicators. In section 3 the results of section 2 are used for the case of Levy plates. In section 4 we 
present several illustrative examples. The conclusions are drawn in section 5. 

 
2. Plate models 
In this section we present basic equations of Kirchhoff and Mindlin plate models and algebraic 
relationship between them. We recall basic results of edge effect analysis for Mindlin model and 
introduce several model error indicators. 

 
2.1 The Mindlin and the Kirchhoff plate models and their relationship 
Let us consider a plate of thickness h, which mid-plane is in the xy  plane. We assume that any 
transverse loading on the plate can be adequately represented by ( )yxqq ,= . The three basic sets of 
equations of any structural model (i.e. equilibrium, kinematic and constitutive) are for the Mindlin 
bending plate model 
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Here, M
y

M
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M
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M
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M
xx QQMMM ,,,,  are stress resultants, yx φφ ,  are rotations of the fibers normal to the 

mid-plane, Mw  is deflection of the mid-plane in the z direction, M
xy

M
xx

M
xx κκκ 2,,  are bending strains 
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(curvatures), M
y

M
x γγ ,  are transverse shear strains, D and sD  are plate constants defined as 

( )( )23 112/ ν−= EhD , GhDs 2κ= , G is shear modulus ( )( )ν+= 12/EG , E is elastic modulus, ν  
is Poisson's ration, 2κ  is shear correction factor usually set to 5/6 for elastic isotropic plates, and 
( ) ( ) a/a, ∂∂= oo . The superscript M relates a quantity with the Mindlin model. Equations (1)-(3) can 

be reorganized into three coupled differential equations in terms of yx
Mw φφ ,,  by defining the moment 

sum ( ) ( ) ( )yyxx
M
yy

M
xx

M DMM ,.1/M φφν +=++= , see (3) and (2), and by using the constitutive and 
the kinematic equations in the equilibrium equations 
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where 22222 y/x/ ∂∂+∂∂=∇ .  

One can replace three coupled equations (4) by a set of two uncoupled differential equations in 
terms of Mw  and ( )x,yy,x φφ − , as shown below. Note that expressions on the right hand side of Eqs. 
(4)2 and (4)3 can be regarded as “equilibrium shear forces”, and those on the left hand side as 
“constitutive shear forces”. By using both types of shear forces in the first equilibrium equation (1)1 
one gets the following two equations 

 ( ) 1
,,

22 M −−=+∇⇒−=∇ qDq yyxx
M φφ  (5) 

and 

 ( ) qDwD MMs −=+∇ −12 M   (6) 

If MM  in (6) is replaced by (5)1, a 4th order differential equation for the mid-plane displacement Mw is 
obtained 

 ( )qDDw sM 2114 ∇−=∇
−−   (7) 

where ( ) 44224444 //2/ yyxx ∂∂+∂∂∂+∂∂=∇ . The second equation can be obtained by equating the 
difference M

xy
M

yx QQ ,, −  for both types of shear forces to get 
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Equations (7) and (8)1 are two uncoupled differential equations of the Mindlin model for Mw  and 
( )x,yy,x φφ − . In what follows, we will also use notation  

 ( )x,yy,x φφ −=Ω  (9) 

The coupling between Mw  and Ω  is achieved through the boundary conditions. If (7) and (8) are 
solved for some given boundary conditions, the rotations yx φφ ,  can be obtained from (4) as 
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The stress resultants can be obtained from (2) and (3). 
For the Kirchhoff plate model the equilibrium, kinematic and constitutive equations are 
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By inserting constitutive and kinematic equations, (13) and (12), into (11), one can get the following 
expressions for the “equilibrium shear forces” 

 ( ) ( ) y,
K

y,
KK

yx,
K

x,
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x wDQ,wDQ MM 22 =∇−==∇−=  (14) 

where the moment sum is defined as ( ) ( ) ( ) KK
yy

K
xx

K
yy

K
xx

K wDwwDMM 2
,,1/M ∇=+=++= ν . The 

superscript K relates a quantity with the Kirchhoff model. By inserting (14) into (11)1, one can get the 
familiar 4th order differential equation for the mid-plane displacement of the Kirchhoff model 

 14K2M −=∇⇒−=∇ qDwq K  (15) 

Once (15) is solved for some given boundary conditions, the stress resultants can be obtained from 
(12) and (13). It is clear from (2) and (12) that for the Kirchhoff model K

yy
K
xx ww ,, , −=−= φφ , and 

therefore ( ) 0=−=Ω x,yy,x φφ . 

To solve the boundary value problem of the Mindlin model (i.e. equations (7) and (8)1 for 
given boundary conditions) one can use an approach of Lee et al. [13], Lim and Reddy [14] and Reddy 
and Wang [15], who expressed Mindlin solution in terms of the corresponding Kirchhoff solution. In 
the above mentioned works they exploited the fact that the load q is model independent. Having that in 
mind, one can set K2M2 MM ∇=∇ , see (5)1 and (15)1, and further 

 Φ∇+= 2MM DKM  (16) 

Here ( )y,xΦ  is a function, which has to satisfy equation 

 04 =Φ∇  (17) 

By using (16), (15) and KK wD 2M ∇=  in (6), one can obtain the following relationship between the 
Mindlin and the Kirchhoff mid-plane displacements as 

 Φ−++=
− ψ1M sKKM Dww  (18) 

Here ( )y,xψ  is a function, which has to satisfy equation 

 02 =∇ ψ   (19) 

It is clear from (18) that solution of the first differential equation of the Mindlin model (7) can be 
replaced by solutions of the three differential equations (15)2, (17) and (19), which might be easier to 
solve. In view of (9) we also write the second uncoupled differential equation of the Mindlin model 
(8)1 as 

 0
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If equations (15)2, (17), (19) and (20) are solved for some given boundary conditions (note, 
that ψ,Φ  and Ω  depend both on displacement/rotation boundary conditions and loading), one can 
get with (4), (16) and (18) the following expressions for rotations 
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By inserting (18) and (21) into (2) and (3), one can finally obtain expressions for the Mindlin stress 
resultants in such a way that they already include Kirchhoff stress resultants (12) and (13) 
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where 
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As shown e.g. by Arnold and Falk [2], [3] or Häggblad and Bathe [4], Mindlin rotations and 
stress resultants can have a sharp change in behavior near the plate edge (i.e. edge effect or boundary 
layer effect). It is known that the biharmonic differential equation does not have such an edge effect. 
Since the Kirchhoff part and the “shear part” are related to biharmonic equations, see (15) and (7), 
they are not responsible for the edge effect. It follows from (18) that ψ  and Φ  are not responsible for 
the edge effect either. It is therefore Ω  alone, which governs the edge-zone behavior of rotations and 
stress resultants. We can conclude from the above that the Mindlin solution can be seen as a sum of 
three parts: (i) the Kirchhoff solution, (ii) the “shear part” of the solution, which includes ψ  and Φ  
functions (the single underlined terms in the above equations), and (iii) the Ω  function part or the 
“boundary layer part” of the solution (the double underlined terms in the above equations). 

 
2.2 Boundary layer in the solution of the Mindlin model 
As discussed above, it is the Ω  function that is responsible for the boundary layer. It can be 
interpreted as the local transverse twist, see (9). By examining eq. (20), we can conclude that the term 

Ω∇2  has an increasingly smaller role for decreasing h. Therefore, for thin plates Ω  is considerably 
different from zero only near the boundary. For decreasing h the “shear part” of the solution also tends 
towards zero. Thus, for thin plates the part (ii) of the solution is very small and the part (iii) of the 
solution is negligible in the interior of the plate. In such a case the Mindlin solution can be seen as the 
perturbed Kirchhoff solution. For that reason Häggblad and Bathe [4], see also Arnold and Falk [2], 
[3], assumed the following asymptotic expansions of Mw  and Ω  in powers of h 
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where χ  is a cut-off function equal to one in the edge-zone and zero outside that region, 
( ) ρρ c

ii esh −Ω=Ω ,/  are boundary layer functions, s,ρ  are boundary fitted coordinates ( ρ is 
distance from the point under consideration to the nearest point on the boundary curve and s is arc-
length parameter of that point). For Kirchhoff solution 0=Ω .  

With the above expansions Arnold and Falk [2], [3] and Häggblad and Bathe [4] subsequently 
solved Mindlin plate boundary value problems and evaluated relative strengths of Ω  function, 
rotations and stress resultants for smooth edge curves and for different boundary conditions. Their 
results are summarized in Table 1. The strength is related to the power of the first non-vanishing term 
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in the solution. Note, that stress resultants in Table 1 are defined as DMM M
nnnn /= , DQQ M

ss /= , 
etc., where coordinate n has an opposite direction of  ρ . No boundary layer exists for transverse 
displacement. Neither there is a boundary layer for hard-simply supported and soft-clamped straight 
(i.e. zero curvature) edges. 
 
2.3 Model error indicator 
When analyzing plates it is interesting to have an information weather the chosen model is an adequate 
one, i.e., weather it does or does not produce non-desirable high error (at some regions of the plate) 
with respect to the solution of the model that we a priori know that it performs better (in comparison 
with the 3d solid model) then the chosen one. To evaluate the model error, one thus has to have 
solutions of two hierarchical models, where the hierarchy is defined with respect to the 3d model.  

Concerning the present problem, we a priori know that the Mindlin solution is closer to the 3d 
solution than the Kirchhoff one. If one has both Kirchhoff and Mindlin solutions available for the 
same plate problem (as this is the case here, since the latter solution incorporates the former one), a 
model error indicator for the Kirchhoff model can be defined as the difference between those two 
solutions. The difference can be written in a form of normalized energy norm, i.e. as 
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The indicator MKη  in (25) shows how apart are the solutions (in an energy sense) at a certain point of 

the plate. One can choose vector MKFΔ  to represent the difference between the Mindlin and the 
Kirchhoff “constitutive stress resultants” and vector MF  to represent the stress resultants of the 
Mindlin model 
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Matrix D is the plate constitutive matrix 
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In such a case it is the shear part of the plate bending energy that characterizes the difference between 
the Kirchhoff and the Mindlin model in (25), since the “constitutive shear forces” of the Kirchhoff 
model are zero. We denote model error indicator based on (26) and (25) as consMK ,η  

 MM

consMKconsMK
consMK

FDF
FDF

1

,1,
,

−

− ΔΔ
=η  (28) 

Alternatively, the “equilibrium shear stress resultants” of the Kirchhoff model K
xQ  and K

yQ  

can be included in vector MKFΔ  in (25), i.e. 
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We denote such error indicator as equilMK ,η  
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It takes into account only the “shear part” and the “boundary layer part” of the Mindlin solution, see 
(22) and (23). However, it is usually not sensitive enough, since the difference between the 
“equilibrium” Mindlin and Kirchhoff stress resultants is rather small in general. 

One can also consider the difference between the Mindlin and the Kirchhoff “constitutive 
moments” as small in comparison to the difference between the Mindlin and the Kirchhoff 
“constitutive shear forces”. The model indicator MKη  in (25) can be therefore replaced by the 
following one 

 MM
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QDQ

1

1

−

−

=η  (31) 

where MQ and sD are given as 
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The indicator (31) is approximation of (28). It is again characterized by the shear part of the plate 
bending energy, but it only party takes into account (through the shear forces) the “shear part” of the 
Mindlin solution as well as its “boundary layer part”. 

One can also try to indicate the error of the Kirchhoff model by solution of this model only, 
i.e. by 
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K QQ ,=Q and [ ]TK
y
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xx

K QQMMM ,,,,=F . As shown below in numerical 
examples, such error indicator is not very reliable, since Kirchhoff stress resultants do not carry any 
information about the boundary layer effects and the “shear effects”, which are intrinsic only to the 
Mindlin solution.  
 
3. Rectangular Levy plates  
In this section we use the above results for the case of Levy plates. 
 
3.1 Mindlin solution 
Let us consider a rectangular plate of constant thickness h, which mid-surface occupies region 
( ) [ ] [ ]{ }2/,2/,,0|, bbyaxyx −∈∈ . It has two opposite edges at 0=x  and ax =  hard-simply 

supported, and the remaining two edges arbitrarily supported (hard- or soft-simply supported, hard- or 
soft-clamped or free). It is assumed that any loading q can be described by a single Fourier series as 

 ( ) ( )∑
∞

=

=
1m

mm xsinyqy,xq α   (34) 

where 1−= amm πα . In what follows we will restrict ourselves to a case where ( )y,xq  is constant or 
linear function with respect to y.  

In order to obtain the Kirchhoff solution, the following series for displacements is assumed

    ( ) ( )∑
∞

=

=
1

sin,
m

m
K

m
K xyWyxw α      (35) 

that satisfies simply supported boundary conditions at 0=x  and ax = , i.e. 0== K
xx

K Mw . Note, 
that the Kirchhoff model defines simple supports as hard-simple supports, see e.g. Babuška and Lee 
[5]. By using (22) and (23) in (15)2, an ordinary 4th order differential equation with constant 
coefficients is obtained for each m 
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 ( ) ( ) ( ) ( ) 14
4321

−
++++= mmmmmmmm

K
m DqysinhyAAycoshyAAyW ααα  (36) 

Here Aim (i=1,4) are constants that are determined from the boundary conditions at 2/by ±= . Two 
boundary conditions are defined at each edge, see Table 2. In this work the constants Aim have been 
obtained by using symbolic mathematical computer code Mathematica [16], but they can be also 
found in textbooks on Kirchhoff plates, see e.g. Reddy [17]. Once Aim are known, the displacement 
and stress resultants of the Kirchhoff model follow from (36), (35), (12) and (13). 

In order to get Mindlin solution as an extension of the Kirchhoff solution, one can choose 
displacement and rotations of the form 

 
( ) ( )
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m
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M
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xyWyxw

αϕφαϕφ

α
 (37) 

Expressions (37) are in accordance with the hard-simply supported boundary conditions at 0=x  and 
ax = , i.e. 0=== y

M
xx

M Mw φ . In the next step one has to define appropriate expressions for ψ,Φ  
and Ω . We recall that those functions have to: (i) satisfy differential equations (17), (19) and (20), and 
(ii) enable hard-simple support boundary conditions at 0=x  and ax =  when inserted in (21) and 
(18). Note, that (ii) is identical to the requirement that rotations yx φφ , and displacement Mw are 
written in the form (37), when expressions for ψ,Φ  and Ω  are introduced in (21) and (18). It can be 
proven that the following functions are consistent with the above demands 
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cosycoshCysinhCy,x

sinsinhCcoshCy,x

sinsinhCcoshCyy,x

αλλ

ψαααψ

ααα
α

 (38) 

Here 222 cmm +=αλ , where constant c2 is defined in (8)2. Cim (i=1,6) are unknown constants that are to 
be determined from the Mindlin model boundary conditions at 2/by ±= . Three boundary 
conditions are needed at each edge; see Table 2 for their explicit expressions.  

In the present work the constants Cim have been obtained for boundary conditions from Table 
2 by using Mathematica [16]. The expressions are lengthy and can be for Levy plates with 
symmetrical loading for hard-simple supported, hard-clamped and free edges found elsewhere, see e.g. 
Lee et al. [13] or Reddy and Wang [14]. To be complementary with the above mentioned works, we 
provide in Appendix only the constants Cim for soft-simple supported and soft-clamped edges. The 
constants in Appendix are valid for any symmetric loading with respect to 0=y  that can be 
expressed in form (34). Note, that for such loading 0641 === mmm CCC , independently of the type 
of boundary conditions.  

Once Cim are obtained, the functions (38) become complete. They can be used, together with 
the corresponding Kirchhoff solution, in (21), (18) and (22) to evaluate Mindlin rotations, 
displacement and stress resultants, respectively. The coefficients ( )yxmϕ , ( )yymϕ  and ( )yW M

m  can be 
also easily evaluated. We note, that for SH-SS plate and for SH-CS plate the corresponding Kirchhoff 
solutions are of hard type, since there are no soft-simple supported and no soft-clamped Kirchhoff 
results. 
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3.2 Boundary layer 
Arnold and Falk [2] showed that for hard-simply supported and soft-clamped boundary conditions 
there are no edge effects for edges with zero curvature (i.e. for straight edges). Accordingly, in 
rectangular plates under consideration no edge effects are expected at 0=x  and ax = , while edge 
effects should be observed at 2/by ±=  for soft-simply supported, hard-clamped and free boundary 
conditions. No edge effects should be observed at 2/by ±=  for hard-simply supported and soft-
clamped boundary conditions.  

With respect to Table 1 we have at 2/by ±=  yn =  and xs = . We therefore expect very 
strong edge effect for xQ  in SH-SS and SH-F plates, strong edge effects for yQ  and xyM  in SH-SS 
and SH-F plates and weaker edge effects for other quantities of SH-SS, SH-F and SH-CH plates. In 
general we expect strong edge effects in SH-SS and SH-F plates and weak edge effects in SH-CH 
plate. 
 
3.3 Model error indicator and thickness sensitivity 
With analytical solutions available for both the Kirchhoff and the Mindlin model, one can easily 
compute the model error indicators (28), (30), (31) and (33) at each point of the plate.  

Moreover, one can also compute sensitivity of the Mindlin stress resultant on the thickness. Note, 
that the Kirchhoff solution does not depend on the thickness h (except through the factor 3h ), while 
the Mindlin solution depends on the thickness in a complicated way. One may thus define 

 
( ) ( )

L,
h

h,y,xQ
Q,

h
h,y,xM

M
M
xM

xh

M
xxM

xxh ∂
∂

=
∂

∂
=  (39) 

to check sensitivity of stress resultants on the thickness. 
 
4. Examples 
4.1 Exact solution for a sinusoidal loading 

As a first illustrative example we consider a square plate 6/5,10,1 26 ==== κEba , 
210,3.0 −== hν , loaded by 1

0 sin −= xaqq π , 10 =q . Boundary conditions at the edges 
axx == ,0  are of hard-simply supported type, and boundary conditions at the remaining two edges 

at 2/by ±=  are listed in Table 2. For the chosen loading the exact analytical Mindlin and Kirchhoff 
solutions can be obtained by using a single term, i.e. 1=m .  

With this example we illustrate edge effects in rectangular plates. According to Table 1 one 
should expect strong boundary layer at F and SS edges, and weak boundary layer at CH edge. Since 
the boundary layer appears only in Mindlin solution, it can be presented as the difference between the 
Mindlin and the Kirchhoff solution. Such presentation is shown for SH-F plate in Figure 2. It can be 
clearly seen from Figure 2 that sharp solution differences appear in the vicinity of the edges (although 
the values may be small in an absolute manner). Away from the boundary layer the two solutions are 
very similar; they differ only for the “shear part” (see the single underlined terms in (21)-(23)). Edge 
effect is observed for all quantities except for Mw  and yφ , which is in accordance with Table 1.  

Figures 3 and 4 further show the Mindlin internal forces in a plate section .constx =  near the 
boundary 2/by =  for three different ratios a/h  (the coordinate ρ  is defined as yb −= 2/ρ ). 
The results are for SH-F, HS-CH and HS-SS plates, respectively, and are in agreement with Table 1. 
The strongest boundary layer at the F edge (Figure 3) exhibits the shear force in the direction 
tangential to the edge M

xQ , weaker edge effect is observed for M
yQ  and M

xyM , and the weakest for 
M
xxM  and M

yyM . The same order of the boundary layer stress resultants strengths is observed also for 
CH and SS edges (Figure 4), although edge effects at CH edge are not as strong as at F and SS edges.  
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Stress resultants of Mindlin solution are complicated functions of thickness h, which can be 
illustrated by plotting their derivatives with respect to h (we call them sensitivities). Figure 5 shows 
sensitivities of some stress resultants for SS edge. It is interesting to see that sharp variations of 
sensitivities are observed in the edge zone, and that sensitivities have equal and almost constant value 
outside that zone for all h/a ratios. 
 
4.2 Approximate solution for uniform loading 
In this section we present Mindlin results for a square plate ba =  with 2.0/ =ah , 3.0=ν , 

6/52 =κ  and uniform loading 0qq = . We compare our results with those of Lee at el. [13] and Kant 
and Hinton [18] in Tables 3, 4 and 5, and we show some new results in Table 6. It can be seen that the 
present results are in very good agreement with the compared ones when the chosen number of 
harmonics is 40. 
 
4.3 Estimation of model error for a square plate under uniform loading 
With this example we estimate model error for a square plate ba =  with 1.0/ =ah , 3.0=ν , 

6/52 =κ  and uniform loading 0qq = . The number of harmonics is 40.  

The results are presented in Figures 6-8. Figure 6 shows contour plots of model error 
indicators (28), (31) and (33), and Fig. 7 shows 3d plots of the same indicators. It can be seen from 
those two figures that indicator (28) and its approximation (31) yield very similar results, except for 
the SH-CH plate, where the corner values of indicator (28) are badly approximated by indicator (31).  
The reason for this is neglection of the “shear part” and the “boundary layer part” of the Mindlin 
moments in (31). Recall that those effects were only included through the Mindlin shear forces, 
although it seems that in this case they have considerable influence on the Mindlin moments as well. It 
can be also seen from Figs 6 and 7 that indicator (33) fails to represent the shape of indicator (28) in 
the case of SH-SS and SH-F plates. This is expected, since those two plates have the strongest 
boundary layer effect, which cannot be captured by Kirchhoff solution used in (33). On the other hand, 
(28) and (33) are similar for the case of SH-SH and SH-CS plates, which do not have the boundary 
layer. The Kirchhoff shear energy indicator (33) is also not capable to distinguish between the soft and 
the hard supports. We can conclude from this example that the model error indicator (31) is reasonable 
approximation of (28), and that the model error indicator (33) is not reliable. 

In Figure 8 we present energy norm of the “shear part” and the “boundary layer part” of the 
Mindlin solution, which is expressed by the indicator (30). It can be seen that the value of (30) is zero 
over the entire domain for SH-SH plate, and is non-zero only at the corners of SH-CS plate (which has 
no boundary layer) and SH-CH plate (which has weak boundary layer). This model error indicator 
shows the difference (expressed in an energy norm) between the “equilibrium stress resultants” of the 
Mindlin and the Kirchhoff models. 
  
5. Conclusions 
The Fourier series solutions were derived for Mindlin and Kirchhoff plate models in the case of 
rectangular Levy plates. For a specified boundary value problem the equations of both models were 
solved simultaneously and the results of the Mindlin model were expressed by using the Kirchhoff 
results. The terms in the expressions for the Mindlin rotations and stress resultants were identified that 
are related to the edge effects and to the shear constraint relaxation. The model error indicators were 
suggested to find regions of the plate where Kirchhoff model is adequate and more refined Mindlin 
model should be used.  

The chosen examples illustrate behavior of stress resultants in the boundary layer for different 
thickness to span ratios and for different boundary conditions as well as sensitivity of the stress 
resultants on plate thickness. It has been also shown by the examples that the derived analytical 
solutions can be useful for testing the discretization error as well as the modeling error indicators 
derived within the adaptive finite element analysis of plates. 
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Appendix 

Mindlin constants for soft-simply supported plate at 2/by ±=  and for symmetric loading with 
respect to 0=y  are: 

0641 === mmm CCC  
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Mindlin constants for soft-clamped plate at 2/by ±=  and for symmetric loading with respect to 

0=y  are: 
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Table 1. Strengths of Ω  function, rotations and stress resultants 
 Ω  sφ  nφ  nnM  ssM  snM  sQ  nQ  
Soft-simply supported 0 1 2 1 1 0 -1 0 
Hard-simply supported 1 2 3 2 2 1 0 1 
Soft-clamped 2 3 4 3 3 2 1 2 
Hard-clamped 1 3 4 3 3 2 1 2 
Free 0 1 2 1 1 0 -1 0 
 
 
Table 2. Boundary conditions for Levy plates at 2/by ±= . 

Boundary conditions Plate description Kirchhoff model Mindlin model 
Soft-simply supported SH-SS  0=== M

xy
M
yy

M MMw  
Hard-simply supported SH-SH 0== K

yy
K Mw  0=== x

M
yy

M Mw φ  
Soft-clamped SH-CS  0=== M

xyy
M Mw φ  

Hard-clamped SH-CH 0== K
y,

K ww  0=== yx
Mw φφ  

Free SH-F 0=+= K
x,xy

K
y

K
yy MQM 0=== M

xy
M
y

M
yy MQM  

 

 
Table 3. Non-dimensional results for SH-SH plate; absolute values. 
(x/a;y/a) Stress 

resultant 
Present 
(m=40) 

Present 
(m=20) 

Lee et al. [13] 
(m=40) 

Kant & Hinton 
[18] 

(0.5;0) )/( 2
0aqM M

xx  0.047885 0.047878 0.0479 0.0479 
(0.5;0) )/( 2

0aqM M
yy  0.047886 0.047884 0.0479 0.0478 

(1;0.5) )/( 2
0aqM M

xy  0.032475 0.033246 0.0325 0.0324 
(1;0) )/( 0aqQM

x  0.332592 0.327534 0.333 0.332 
(0.5;0.5) )/( 0aqQM

y  0.337531 0.337154 0.338 0.337 
(0.5;0) )/( 4

0aqDwM  0.004904 0.004904 0.004904 0.0049 
 
 
Table 4. Non-dimensional results for SH-CH plate; absolute values. 
(x/a;y/a) Stress 

resultant 
Present 
(m=40) 

Present 
(m=20) 

Lee et al. [13] 
(m=40) 

Kant & Hinton 
[18] 

(0.5;0) )/( 2
0aqM M

xx  0.029210 0.029204 0.0292 0.0292 
(0.5;0) )/( 2

0aqM M
yy  0.033053 0.033051 0.0331 0.0330 

(0.5;0.5) )/( 2
0aqM M

yy  0.062687 0.062685 0.0627 0.0626 
(1;0) )/( 0aqQM

x  0.251206 0.246148 0.251 0.251 
(0.5;0.5) )/( 0aqQM

y  0.474938 0.474558 0.475 0.475 
(0.5;0) )/( 4

0aqDwM  0.003021 0.003021 0.003021 0.002930 
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Table 5. Non-dimensional results for SH-F plate; absolute values. 
(x/a;y/a) Stress 

resultant 
Present 
(m=40) 

Present 
(m=20) 

Lee et al. [13] 
(m=40) 

Kant & Hinton 
[18] 

(0.5;0) )/( 2
0aqM M

xx  0.122924 0.122917 0.123 0.123 
(0.5;0) )/( 2

0aqM M
yy  0.023722 0.023720 0.0237 0.0237 

(1;0) )/( 0aqQM
x  0.456581 0.451523 0.457 0.456 

(0.5;0) )/( 4
0aqDwM  0.014539 0.014539 0.014539 0.014496 

 
 
Table 6. Non-dimensional results for SH-SS and SH-CS plate; absolute values. 
(x/a;y/a) Stress resultant Present (m=40) Present (m=40) 
  SH-SS SH-CS 
(0.5;0) )/( 2

0aqM M
xx  0.051500 0.029795 

(0.5;0) )/( 2
0aqM M

yy  0.050762 0.033525 
(1;0.25) )/( 2

0aqM M
xy  0.020854 0.012484 

(1;0) )/( 0aqQM
x  0.348294 0.253811 

(0.5;0.5) )/( 0aqQM
y  0.403499 0.505320 

(0.5;0) )/( 4
0aqDwM  0.00527 0.003081 

 

 
 
 

 
Figure 1. Levy plate: notation. 
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Figure 2. Square SH-F plate. Difference between the Mindlin and the Kirchhoff solutions. Top, from 
left to right: (a) ( KM ww − )10-4, (b) ( ( )K

xx w,−−φ )10-3, (c) ( ( )K
yy w,−−φ )10-3. Middle, from left to 

right: (d) ( K
xx

M
xx MM − )10-4, (e) ( K

yy
M
yy MM − )10-4, (f) ( K

xy
M
xy MM − )10-2. Bottom, from left to right: 

(g) K
x

M
x QQ − , (h) ( K

y
M
y QQ − )10-2. 
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Figure 3. Sqare SH-F plate. Normalized values near the edge 2/by = : (a) M
xxM  at x=a/2, (b) M

yyM  at 

x=a/2, (c) M
xyM  at x=a/10, (d) M

xQ  at x=a/10, (e) M
yQ  at x=a/10. 
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Figure 4: Sqare SH-CH plate: Normalized values near the edge 2/by = : (a) M
xyM  at x=a/10, (b) M

xQ  

at x=a/10, (c) M
yQ  at x=a/10. Sqare HS-SS plate: Normalized values near the edge 2/by = : (d) 

M
xyM  at x=a/10, (e) M

xQ  at x=a/10, (f) M
yQ  at x=a/10. 
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Figure 5. Sqare SH-SS plate. Sensitivity of stress resultants on plate thickness. Normalized values near 
the edge 2/by = : (a) M

xxM  at x= a/2, (b) M
yyM  at x=a/2, (c) M

xyM  at x=a/10, (d) M
xQ  at x=a/10, (e) 

M
yQ  at x=a/10. 
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Figure 6. Contour plot of model error for SH-SS plate (first row), SH-SH plate (second row), SH-CS 
plate (third row), SH-CH plate (fourth row) and SH-F plate (fifth row). Three different model error 
indicators are used: eq. (28) (first column), eq. (31) (second column) and eq. (33) (third column). 
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Figure 7. 3d plot of model error for SH-SS plate (first row), SH-SH plate (second row), SH-CS plate 
(third row), SH-CH plate (fourth row) and SH-F plate (fifth row). Three different model error 

indicators are used: eq. (28) (first column), eq. (31) (second column) and eq. (33) (third column). 
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Figure 8. 3d plot of model error (30) for SH-SS, SH-SH and SH-CS plates (first row), and SH-CH and 

SH-F plates (second row).  
 


