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Locking-free two-layer Timoshenko beam

element with interlayer slip

S. Schnabl, M. Saje, G. Turk ∗ and I. Planinc

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,

SI-1115 Ljubljana, Slovenia

Abstract

A new locking-free strain-based finite element formulation for the numerical

treatment of linear static analysis of two-layer planar composite beams with

interlayer slip is proposed. In this formulation, the modified principle of

virtual work is introduced as a basis for the finite element discretization. The

linear kinematic equations are included into the principle by the procedure,

similar to that of Lagrangian multipliers. A strain field vector remains the

only unknown function to be interpolated in the finite element

implementation of the principle. In contrast with some of the

displacement-based and mixed finite element formulations of the composite

beams with interlayer slip, the present formulation is completely locking-free.

Hence, there are no shear and slip locking, poor convergence and stress

oscillations in these finite elements. The generalization of the composite

beam theory with the consideration of the Timoshenko beam theory for the
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individual component of a composite beam represents a substantial

contribution in the field of analysis of non-slender composite beams with an

interlayer slip. An extension of the present formulation to the nonlinear

material problems is straightforward. As only a few finite elements are

needed to describe a composite beam with great precision, the new finite

element formulations is perfectly suited for practical calculations.

Key-words: composite beam, interlayer slip, Timoshenko beam theory,

locking, finite element method.

1 Introduction

Multi-layered structures have been playing an increasingly important role in

different areas of engineering practice, perhaps most notably in civil,

automotive, aerospace and aeronautic technology. Classical cases of such

structures in civil engineering are steel-concrete composite beams in

buildings and bridges, wood-concrete floor systems, coupled shear walls,

concrete beams externally reinforced with laminates, sandwich beams, and

many more. It is well known, that the behaviour of these structures largely

depends on different materials of individual components and by the type of

their connection. There exist many ways how to obtain the connection

between the components. Usually, mechanical shear connectors are employed

to provide a desired composite action. With the use of rigid shear

connectors, a full shear connection and full composite action between the

individual components can be achieved. Consequently, conventional

principles of the solid beam analysis can be employed. Unfortunately, the full

shear connection can hardly be materializied in practice and thus only an

incomplete or partial interaction between the layers can be obtained and an
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interlayer slip often develops. In some cases it significantly effects the

mechanical behaviour of composite systems.

Hence, the inclusion of the interlayer-slip effect into multi-layered beam

theory is essential for optimal design and accurate representation of the

actual mechanical behaviour of multi-layered structures with partial

interaction between the components. Many efforts and large number of

research studies have been devoted to obtaining the solution of the

aforementioned problem. Early studies on beams with partial interaction

between the layers were based on the assumptions of linear elastic material

models and the Euler-Bernouli hypothesis of plane sections. Perhaps the first

but certainly the most quoted partial action theory was developed by

Newmark et al. [1]. Up to now, a number of elastic theories have been

developed and presented in professional literature [2–9]. The main

disadvantage of all these elastic theories and their closed form analytical

solutions is that they could be obtained only for problems with simple

geometry, loading and boundary conditions. Therefore, in recent years

numerous investigators have refined these theories to incorporate several

aspects of non-linear geometric and material behaviour [10–14] as well as

torsion [15], time dependent effects [8], uplift [16] and dynamics [17]. Such

complex problems are usually solved using numerical methods such as finite

difference methods and finite element methods. Among all those numerical

methods, the majority of researchers have employed the displacement-based

[16, 18], force-based [19] and mixed [18–22] finite element method. It is well

known, that finite element models which use low-order interpolation and a

few finite elements experience so-called slip locking for high values of

stiffness of the shear connection [18, 21]. This locking is due to the

inconsistent approximation of different fields governing the beam model. It is
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possible to reduce or completely eliminate locking by lowering the degree of

interpolation functions for the slip or by introducing elements with larger

numbers of degrees of freedom [18, 21].

Besides, one of the basic assumptions of all aforementioned models with

partial interaction between the layers was the most commonly used

Euler-Bernoulli beam theory for each individual layer, respectively. The main

shortcoming of the classical Euler-Bernoulli beam theory is that no

transverse shear deformation is allowed for. This implies an infinite shear

stiffness of individual layer. Since, in reality, no material exists that possesses

such a property, the suitability of the Euler-Bernoulli beam theory for

composite beams with an interlayer slip can be questioned, especially for

thick and short composite beams. In these cases, the application of the

Timoshenko beam theory is indispensable for accurate prediction of the

mechanical behaviour of aforementioned structures. A large number of

homogeneous beam elements based on Timoshenko beam theory have

appeared in the literature. To eliminate shear and membrane locking, several

approaches have been proposed. Among them, the reduced or selective

integration technique is the most common. An extensive list of references on

locking in Timoshenko beams is not among the goals of this work. On the

other hand, there seems to exist only one report on the exact solution of

Timoshenko composite beam with an interlayer slip [23], and no reports on

the finite element formulation of Timoshenko composite beams with the

partial interaction between the layers. In the present paper, we aim to fill

this gap.

The objective of this paper is two-fold. Firstly, we present a new locking-free

strain-based finite element formulation for the linear static analysis of
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two-layer planar beams with interlayer slip. In this formulation, the principle

of virtual work has been employed as a basis for the finite element

discretization. Thus, we have proposed a modified form of the principle of

virtual work by including the linear kinematic equations as constraining

equations by a procedure, similar to that of Lagrangian multipliers. In this

way we eliminate the displacement field vector from the principle of virtual

work. As a result, the strain field vector remains the only unknown function

to be approximated in the finite element implementation. This means, that

only the extensional strains and pseudocurvatures of reference axis of

individual layers and transverse shear strains of layer cross-sections need to

be interpolated. Furthermore, the present approach uses the concept of the

consistent equilibrium of constitutive and equilibrium-based stress-resultants

[24] and the Galerkin type of the finite element formulation is employed [25].

In contrast with many of the aforementioned displacements-based,

force-based and mixed finite element formulations of composite beams with

interlayer slip, the present formulation is completely locking-free.

Consequently, the ambiguous selection of consistent polynomial

approximations for physically different field variables can thus be fully

avoided.

The second objective of the present paper is the incorporation of the

transverse shear deformation into the two-layer composite beam theory with

an interlayer slip. The Timoshenko beam theory for each of the individual

layer has been adopted. Since, the distribution of the transverse shear strain

in the Timoshenko beam theory is assumed to be constant across the

cross-section, the shear correction factor is necessary to use [26] for the

appropriate representation of shear stresses through the cross-section. The
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proposed generalization of the composite beam theory with the Timoshenko

beam theory is therefore an improvement in the field of analysis of

non-slender (thick and short) composite beams with an interlayer slip.

Finally, the common outcome of the present formulation is a family of more

accurate and efficient beam finite elements for the linear static analysis of

two-layer planar Timoshenko beams with an interlayer slip. Any kind of

locking (shear, slip, curvature), poor convergence and stress oscillations are

absent in these finite elements.

2 Formulation of basic equations of a two-layer Timoshenko beam

The following formulation of a two-layer planar Timoshenko composite beam

with an interlayer slip is based on Reissner’s [27] finite-strain beam theory, in

which Bernoulli’s hypothesis of plane cross-sections for each individual layer

is assumed. Plane cross-sections remain planar during deformation but not

necessarily perpendicular to the deformed centroidal axis of the beam. Under

this assumption, the effect of a constant transverse shear strain of the

individual layer can be approximately taken into account by decoupling the

rotation of the cross-section from the slope of the deformed line of centroid.

Accordingly, the Timoshenko [28] beam theory for each layer is applied. In

addition, we assumed that displacements, strains and rotations are small and

that the shapes of the cross-sections are symmetrical with respect to the

plane of deformation and remain unchanged in the form and size during

deformation. Layers are assumed to be continuously connected and interlayer

stiffness of the connection is taken as constant. Besides, tangential slip can

occur at the interface between the layers but no delamination or transverse

separation between them is possible. In what follows, we briefly describe the

basic equations of the two-layer Timoshenko beam.
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2.1 Kinematic, constitutive and constraining equations

We consider an initially straight, planar, two-layer Timoshenko beam

element of undeformed length L, see Fig. 1. Layers are marked by letters a

and b, respectively. The two-layer beam element is analyzed in the

(x, z)-plane of a spatial Cartesian coordinate system with coordinates

(x, y, z) and unit base vectors Ex,Ey,Ez. The reference axis of the two-layer

beam element is common to both layers. It coincides with the axis x and it

lies in the contact plane between the layers. The geometric shape of the

cross-section of each layer is assumed to be arbitrary but symmetric with

respect to (x, z) plane and constant along its longitudinal axis x. Only for

the sake of clearness the cross-sections plotted in Fig.1 are rectangular. The

two-layer beam element is subjected to the action of the conservative

distributed load p = pxEx + pzEz along the span on the upper face of layer

b. Besides, it is also subjected to generalized point forces Sa
i and Sb

i

(i = 1, 2, . . . , 6) at the ends of layers a and b.

The position vectors of material particles of the deformed configurations of

layers a and b in the plane of deformation (y = 0) are defined by

vector-valued functions

Ra(x, z) =
(
x + ua(x) + z ϕa(x)

)
Ex +

(
z + wa(x)

)
Ez, (1)

Rb(x∗, z) =
(
x∗ + ub(x∗) + z ϕb(x∗)

)
Ex +

(
z + wb(x∗)

)
Ez. (2)

In Eqs. (1) and (2), and in all further expressions, the notations (•)a and

(•)b denote whether quantities correspond to layer a or b. Thus, functions

ua(x), wa(x), ϕa(x) denote the longitudinal displacement along the direction

of the reference axis, the transverse displacement, and the rotation of the

cross-section of layer a with respect to the base vectors Ex, Ez and Ey,
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Figure 1. Undeformed and deformed configuration of the two-layer beam

respectively. Variables ub(x∗), wb(x∗), ϕb(x∗) are related to layer b. The

components of the generalized displacement vectors

ua = {ua(x), wa(x), ϕa(x)} and ub = {ub(x∗), wb(x∗), ϕb(x∗)} are related to

the components of the generalized strain vectors εa = {εa(x), γa(x), κa(x)}

and εb = {εb(x∗), γb(x∗), κb(x∗)} by the linearized Reissner’s kinematic

equations [9, 12]:

ua ′(x)− εa(x) = 0, ub ′(x∗) − εb(x∗) = 0, (3)

wa ′(x) + ϕa(x)− γa(x) = 0, wb ′(x∗) + ϕb(x∗)− γb(x∗) = 0, (4)

ϕa ′(x) − κa(x) = 0, ϕb ′(x∗) − κb(x∗) = 0. (5)

In Eqs.(3–5) the prime (′) denotes the first derivative with respect to either

x or x∗, whereas functions ε, γ, κ mark the extensional strain, the transverse

shear strain and the pseudocurvature of the individual layer, respectively.

Conjugate to these strains we have stress resultants
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σa = {N a(x),Qa(x),Ma(x)} and σb = {N b(x∗),Qb(x∗),Mb(x∗)} for the

equilibrium axial forces N a(x),N b(x∗), the transverse shear forces

Qa(x),Qb(x∗) and the bending moments Ma(x), Mb(x∗) of the individual

layer. In order to relate the equilibrium axial and shear forces, and the

equilibrium moments to material models of layers, we introduce a set of

constitutive equations which assures the balance of the equilibrium and

constitutive cross-sectional resultants. For linear elastic material, the

constitutive functions N a
C(x),N b

C(x∗),Qa
C(x),Qb

C(x∗),Ma
C(x),Mb

C(x∗) can be

given in terms of the components of the generalized strain vectors εa and εb.

Thus the constitutive equations of layers are defined by equations

N a(x) = N a
C

(
x, εa(x), κa(x)

)
= EaAaεa(x) + EaSaκa(x), (6)

N b(x∗) = N b
C

(
x∗, εb(x∗), κb(x∗)

)
= EbAbεb(x∗) + EbSbκb(x∗), (7)

Qa(x) = Qa
C

(
x, γa(x)

)
= GaAa

Sγ
a(x), (8)

Qb(x∗) = Qb
C

(
x∗, γb(x∗)

)
= GbAb

Sγ
b(x∗), (9)

Ma(x) = Ma
C

(
x, εa(x), κa(x)

)
= EaSaεa(x) + EaJaκa(x), (10)

Mb(x∗) = Mb
C

(
x∗, εb(x∗), κb(x∗)

)
= EbSbεb(x∗) + EbJ bκb(x∗), (11)

in which Aa,Ab are the areas of cross-sections, Ea,Eb are the elastic modulus,

Sa,Sb are the static moments of area and Ja,J b are the cross-sectional

moments of inertia of layers a and b with respect to the reference axis of the

whole cross-section of the two-layer beam element. In addition, the Aa
S and

Ab
S represent the areas of the shear cross-sections [26].

Once the layers are connected together, the upper layer is constrained to

follow the deformation of lower layer, and vice versa. As already stated, the

layers can slip along each other, but their transverse separation or
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penetration is not allowed. This fact is expressed by the kinematic-constraint

requirement

Ra(x, z) = Rb(x∗, z), (12)

where x ∈ Ia, x∗ ∈ Ib are undeformed coordinates of two distinct particles of

layers a and b which are in the deformed state in contact, and thus their

vector-valued functions Ra(x, z) and Rb(x∗, z) coincide (see Fig. 1). Eq. (12)

can be rewritten in a more convenient component form:

x + ua(x) = x∗ + ub(x∗), (13)

wa(x) = wb(x∗). (14)

The relative displacements (slip) that occurs between the two particles which

coincide in the undeformed configuration is denoted by ∆, and is in the case

of geometrically linear beam theory simply given by

∆(x) = ua(x)− ub(x) = ua(0)− ub(0) +
∫ x

0
(εa(x)− εb(x)) dξ. (15)

In the present paper, the linear constitutive law of the bond slip between the

layers is assumed.

pt = K∆, (16)

where K represents the interlayer slip modulus. For a detailed explanation of

the constraining equations, a reader is directed to the Refs. [9, 11–13, 23].

Assuming strains, displacements, rotations and slips to be small quantities,

the Eqs. (3–5) can be simplified using the following two assumptions (see,

e.g. [12]): (i) dx ≈ dx∗; (ii) vertical deflections of the reference axis of

individual layers are equal wa(x) = wb(x∗) = w(x) and Ia ≈ Ib = [0, L].

Thus, all quantities of layer b are equal at x and x∗, e.g. ub(x∗) = ub(x). Due

to the last two assumptions, the arguments in the following equations can be
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omitted. This implies that a simplified version of the Eqs. (3–5) reads:

ua ′ − εa = 0, ub ′ − εb = 0, (17)

w′ + ϕa − γa = 0, w′ + ϕb − γb = 0, (18)

ϕa ′ − κa = 0, ϕb ′ − κb = 0. (19)

Since the constraining equations define the conditions that assemble an

individual layer into a layered composite beam, the Eqs. (17–19) are not

independent of each other. The application of Eqs. (18–19) to the first and

second derivative of Eq. (14) with respect to x, gives modified Eqs. (18–19)

by which the rotations and pseudocurvatures of layers are constrained to

each other. According to the above simplification, the modified kinematic

equations of the two-layer Timoshenko beam read

ua ′ − εa = 0, (20)

ub ′ − εb = 0, (21)

wa ′ + ϕa − γa = 0, (22)

ϕa ′ − κa = 0, (23)

ϕb − ϕa + γa − γb = 0, (24)

κb − κa + γa ′ − γb ′ = 0. (25)

2.2 The modified principle of virtual work and its finite element formulation

The principle of virtual work states that the difference of virtual works of
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internal and external forces is zero

δW = δW a + δW b =
∫ L

0

(
N aδεa +Qaδγa +Maδκa

)
dx +

+
∫ L

0

(
N bδεb +Qbδγb +Mbδκb

)
dx +

∫ L

0

(
pt δu

a − pn δw
)
dx−

−
∫ L

0

(
(pt + px) δub + (pn − pz) δw

)
dx−

−Sa
1δua(0)− Sa

2δw(0)− Sa
3δϕa(0)− Sa

4δua(L)− Sa
5δw(L)− Sa

6δϕa(L)−

−Sb
1δu

b(0)− Sb
2δw(0)− Sb

3δϕ
b(0)− Sb

4δu
b(L)− Sb

5δw(L)− Sb
6δϕ

b(L) = 0.

(26)

Here, δua, δub, δw are virtual displacements, δεa, δεb, δγa, δγb, δκa, δκb are

virtual strains of the reference axis of the composite beam; δua(0), δua(L),

δw(0), etc., denote the virtual boundary displacements, whereas pn

represents the normal interlayer contact traction. The principle given in Eq.

(26) has been derived on the basis of the assumption that the kinematic and

strain variables as well as their variations are constraint by the kinematic

and constitutive Eqs. (20–25) and (6–11). Hence, only six among the eleven

functions ua, ub, w, ϕa, ϕb, εa, εb, γa, γb, κa and κb are mutually independent.

These constraints are released if the Hu–Washizu functional is introduced

with Eqs. (20–25) as being a set of constraining equations of the functional.

The Eq. (20–25) are scalarly multiplied by arbitrary, independent, and at

least once differentiable Lagrangian multipliers Λi. The scalar products of

the multipliers and the constraining equations are integrated along the

length L and varied with respect to displacements, strains and Lagrangian

multitpliers. The terms that contain first derivatives of displacements and

strains are partially integrated. After adding the obtained expressions to Eq.

(26), the strain-based principle of virtual work called a modified principle of
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virtual work is derived [12, 25]

δWmod =
∫ L

0

(
(N a

C − Λ1)δε
a + (N b

C − Λ2)δε
b + (Qa

C − Λ3 +Mb ′
C )δγa

+(Qb
C −Mb ′

C )δγb + (Ma
C +Mb

C − Λ4)δκ
a
)
dx +

(
ua(L)− ua(0)−

∫ L

0
εadx

)
δΛ1(0)

+
(
ub(L)− ub(0)−

∫ L

0
εbdx

)
δΛ2(0) +

(
w(L)− w(0)−

∫ L

0
(γa − ϕa)dx

)
δΛ3(0)

+
(
ϕa(L)− ϕa(0)−

∫ L

0
κadx

)
δΛ4(0)

−
(
Sa

1 + Λ1(0)
)
δua(0)−

(
Sb

1 + Λ2(0)
)
δub(0)−

(
Sa

2 + Sb
2 + Λ3(0)

)
δw(0)

−
(
Sa

3 + Sb
3 + Λ4(0)

)
δϕa(0)−

(
Sa

4 − Λ1(L)
)
δua(L)−

(
Sb

4 − Λ2(L)
)
δub(L)

−
(
Sa

5 + Sb
5 − Λ3(L)

)
δw(L)−

(
Sa

6 + Sb
6 − Λ4(L)

)
δϕa(L) = 0.

(27)

This strain-based formulation offers a number of advantages, such as a

consistent cross-sectional equilibrium and a derivation of locking-free

strain-based finite elements. The functional (27) stated above represents the

starting point of the strain-based Galerkin-type of the finite element

discretization. The only unknown functions defining the principle (27) are

the strain variables–the axial strains εa, εb, the transverse shear strains γa,

γb and the pseudocurvature κa. Notice, that the displacements, rotations,

forces and moments are included only through their boundary values. Thus,

functions εa, εb, γa, γb, κa and twelve parameters

Λ1(0), Λ2(0), Λ3(0), Λ4(0), u
a(0), ua(L), ub(0), ub(L),

w(0), w(L), ϕa(0), ϕa(L) where Λ1, Λ2, Λ3, Λ4 represent the Euler–Lagrange

multipliers (in this case, the forces and moments in global coordinate

system), fully describe the functional (27). In the finite element

implementation of the principle, we need to interpolate five strain functions
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εa(x), εb(x), γa(x), γb(x), κa(x) and their variations. In this way, the reference

axis of the two-layer Timoshenko beam is divided into finite elements.

Within each element, the strain functions and their variations are

interpolated. For the interpolation of the strain functions, the Lagrangian

polynomials Pn (n = 1, 2, . . . , NI) of degree NI − 1 are employed.

Additionally, it is assumed that the variations of strain functions are

approximated by the Dirac δ–function. The definition of Dirac-delta

function, collocation method and the fundamental lemma of the calculus of

variation used to derive the discrete system of Euler-Lagrange equations can

be found in [29]. The selection of the collocation points xi (i = 1, 2, . . . , NK)

is crucial in obtaining a well conditioned system of equations and a

convergent solution. Thus, the interpolation of the unknowns takes the form

εa(x)
.
=

NI∑
n=1

Pn(x) εa
n, δεa(x)

.
= δ(x− xi), (28)

εb(x)
.
=

NI∑
n=1

Pn(x) εb
n, δεb(x)

.
= δ(x− xi), (29)

γa(x)
.
=

NI∑
n=1

Pn(x) γa
n, δγa(x)

.
= δ(x− xi), (30)

γb(x)
.
=

NI∑
n=1

Pn(x) γb
n, δγb(x)

.
= δ(x− xi), (31)

κa(x)
.
=

NI∑
n=1

Pn(x) κa
n, δκa(x)

.
= δ(x− xi). (32)

Discrete values εa
n, ε

b
n, γ

a
n, , γb

n, κ
a
n represent the nodal values of the

interpolated functions. Thus, for the construction of the finite–element

model of the two-layer Timoshenko beam with an interlayer slip the

Petrov-Galerkin collocation method is used. For the sake of the simplicity,

we assume that the interpolation and collocation points within the element
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coincide: N = NI = NK . Assuming further that equilibrium equations

N a′ − pt = 0, N b′ + pt + px = 0,

Qa′ + pn = 0, Qb′ + pz − pn = 0,

Ma′ + Qa = 0, Mb′ −Qb = 0.

(33)

are identically satisfied, the boundary forces Λ1(L), Λ2(L), Λ3(L), ans the

boundary moment Λ4(L) in Eq. (27) can easily be expressed only by

Λ1(0), Λ2(0), Λ3(0), Λ4(0) and pz, px, px and pz. Insertion of Eqs. (28–32) into

the variational principle (27) and using the fundamental lema of the calculus

of variation yield the discrete system of Euler–Lagrange equations of the

principle:

fi =
(
N a

C − Λ1

)∣∣∣∣∣
x=xi

= 0 i = 1, . . . , N (34)

fN+j =
(
N b

C − Λ2

)∣∣∣∣∣
x=xj

= 0 j = 1, . . . , N (35)

f2N+k =
(
Qa

C − Λ3 +Mb ′
C

)∣∣∣∣∣
x=xk

= 0 k = 1, . . . , N (36)

f3N+l =
(
Qb

C −Mb ′
C

)∣∣∣∣∣
x=xl

= 0 l = 1, . . . , N (37)

f4N+m =
(
Ma

C +Mb
C − Λ4

)∣∣∣∣∣
x=xm

= 0 m = 1, . . . , N (38)

f5N+1 = ua(L)− ua(0)−
∫ L

0
εadx = 0 (39)

f5N+2 = ub(L)− ub(0)−
∫ L

0
εbdx = 0 (40)

f5N+3 = w(L)− w(0)−
∫ L

0
(γa − ϕa)dx = 0 (41)

f5N+4 = ϕa(L)− ϕa(0)−
∫ L

0
κadx = 0 (42)

f5N+5 = Sa
1 + Λ1(0) = 0 (43)

15



f5N+6 = Sb
1 + Λ2(0) = 0 (44)

f5N+7 = Sa
2 + Sb

2 + Λ3(0) = 0 (45)

f5N+8 = Sa
3 + Sb

3 + Λ4(0) = 0 (46)

f5N+9 = Sa
4 − Λ1(0)−

∫ L

0
pt dx = 0 (47)

f5N+10 = Sb
4 − Λ2(0) +

∫ L

0
(px + pt) dx = 0 (48)

f5N+11 = Sa
5 + Sb

5 − Λ3(0) +
∫ L

0
pz dx = 0 (49)

f5N+12 = Sa
6 + Sb

6 − Λ4(0)−
∫ L

0
Λ3 dx = 0 (50)

For a given load factor, λ, Eqs. (34–50) constitute a system of 5N + 12 linear

algebraic equations for 5N + 12 unknowns. There are 5N + 4 internal

degrees of freedom εa
n, ε

b
n, γ

a
n, γb

n, κ
a
n, Λ1(0), Λ2(0), Λ3(0), Λ4(0), and eight

external degrees of freedom, i.e., nodal displacement and rotations ua(0),

ua(L), ub(0), ub(L), w(0), w(L), ϕa(0), ϕa(L) of the finite element. The

internal degrees of freedom are eliminated from the structural assemblage by

the static condensation at the element level. The condensed global tangent

stiffness matrix and the condensed residual force vector of the structure in

then assembled in a classical way. For the solution of the equations a

standard method for solutions of linear system can be employed. Notice, that

for non–singular solution of Eqs. (34–50) at least one longitudinal boundary

displacement, belonging either to layer a or b, must be prescribed.

3 Numerical examples

The following examples demonstrate high accuracy and excellent

performance of the proposed familly of locking-free two-layer Timoshenko

beam finite elements. The purposes of the discussion presented herein are the

following: (i) to check the convergence properties and locking (slip and
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shear) behaviour of presented finite elements; and (ii) to briefly investigate

the influence of shear rigidity on the mechanical behaviour of continuous

two-layer Timoshenko composite beam with interlayer slip.

For this purpose, we consider two simple, but indicative examples: (1) a

simply supported two-layer Timoshenko composite beam with length L; and

(2) a continuous two-layer Timoshenko composite beam over two spans. In

both cases the beams are subjected to conservative distributed load of

intensity pz. The elastic properties Ea, Eb, Ga and Ga, cross-sectional areas

Aa, Ab and all other material and geometric parameters are shown in Fig. 2

and Fig. 6. A shear-correction factor kS for a rectangular cross-section is

taken to be 5/6 [26].

Figure 2. The descriptive geometric, material and loading data of the simply sup-

ported two-layer Timoshenko beam

In order to validate and confirm the accuracy and the convergence

performance of the elements developed in the earlier section, the numerical

results such as mid-point vertical deflections and interlayer slips at the edge

of the beam are evaluated for different types of elements and compared to

the corresponding reference solution, which is taken to be the solution by

1000 finite elements with degree of interpolation polynomials, here termed

by E0. This way we analyze the influence of the degree of interpolation
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functions (Lagrange interpolation polynomials), the number of elements and

the location of collocation points {x1, . . . , xn} on the numerical results of the

Timoshenko two-layer beam. As discussed in Section 2, the set of collocation

points can generally be prescribed arbitrarily. Thus, the results for mid-point

vertical deflection wa(L/2), interlayer slip at the left edge of the beam ∆(0),

and L2-norm of a balance function of equilibrium and constitutive bending

moments ‖MC −M‖2, as a function of number of elements, the collocation

points and the order of interpolation polynomials are displayed in Tables 1–4

for collocation points distributed equidistantly including boundary nodes

(E), by Lobatto (L), Gaussian (G), and Chebyshev (C) quadrature points.

Since the type and the degree of numerical integration are always chosen

such that numerical integration is exact, their influence on the results is not

investigated.

As mentioned above, a variety of finite elements and element meshes have

been applied. The simply supported two-layer Timoshenko beam has been

modeled by 1, 2, 4, 8, 10, 20, 50, 100 and 1000 elements with 0, 1st, 2nd,. . .,

5th degree interpolation polynomials, here termed by E0, E1, E2, . . ., E5. By

employing only one element E0 and E1, the relative error of the computed

mid-point vertical deflection and interlayer slip is significant; by increasing

the number of elements E0 and E1, the error decreases but, the convergence

to the reference solution is relatively slow. On the other hand, the error is

much smaller and the convergence is much faster, if, the degree of

interpolation polynomials is increased. As observed from Tables 1–4, 2

elements E4, 4 elements E3, 8 or 10 elements E2, 1000 elements E0, or only

one element E5 give the mid-point vertical deflection and interlayer slip

which are accurate to 6 digits. Note that good agreement between the
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various collocation schemes is observed. Different choices of the location of

the collocation points give nearly identical results for elements E2–E5, but

not for elements E1. In this case, the Gaussian (G) collocation scheme

indicates to be the most appropriate. It can also be observed from Tables 1–4

that the norm ‖MC −M‖2 decreases uniformly by increasing the number of

elements and the order of interpolation functions. We may then conclude

that the present finite element solution is convergent to the reference one.

Another advantage of the present finite elements is, that they are completely

locking–free. It is well known, that the inherent disadvantage of some finite

element models is the so–called locking. In the case of Timoshenko

composite beam finite elements with an interlayer slip, the typical locking

problems are shear and slip locking. The latter strongly depends on the

connection stiffness [18, 21]. This is a problem of particular interest

especially in the case of high connection stiffnesses, where the slip

oscillations may occur [18, 21]. In order to show that the present finite

elements are slip-locking-free, the distribution of interlayer slip along the

span of a simply supported beam is shown for low (Fig. 3) and high (Fig. 4)

connection stiffness. It can be observed, that in both cases, the finite

elements posses neither slip-locking nor slip oscillations.

Only the results for one and two elements with low order interpolation

polynomials are shown (e.g. 1E1/G means one element E1 with the

collocation points chosen to be distributed accordingly to the Gaussian

integration scheme). For other cases not shown in Figs. 3–4 the results

practically coincide with the reference distribution of interlayer slip, which

would not have been the case, if slip–locking would be present.
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Figure 3. The distribution of interlayer slip over the span of a simply supported

beam for K = 0.243 kN/cm2

Figure 4. The distribution of interlayer slip over the span of a simply supported

beam for K = 2430 kN/cm2

In order to demonstrate that the present finite elements are also free of shear

locking, the vertical deflections (wT ) of the two-layer Timoshenko composite
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beam with the partial interlayer interaction are compared to the vertical

deflections (wB) obtained by the Euler–Bernoulli composite beam model

with the same partial interlayer interaction, for different L/h ratios and

different number of finite elements with different degrees of interpolation

polynomials and different collocation points schemes. It can be observed

from Fig. 5, that in the limiting case where the beam becomes very slender,

the results of the Timoshenko two-layer beam converge to the

Euler-Bernoulli solution of the two-layer beam with an interlayer slip which

is not the case for finite elements which exibite shear locking. Thus, we may

conclude, that the present finite elements of the two-layer Timoshenko

composite beam are shear-locking-free.

Figure 5. The influence of L/h ratios on vertical deflections of a simply supported

two-layer Timoshenko composite beam
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The next example will demonstrate the application of the present locking-free

strain-besed finite element method to stress-strain analysis of more complex

structures. We consider a continuous asymmetric Timoshenko composite

beam over two spans with the interlayer slip modulus K = 0.243 kN/m2. The

descriptive geometric, material and loading data are described in Fig. 6.

Figure 6. The descriptive geometric, material and loading data of a continuous

two-layer Timoshenko composite beam over two spans

A parametric study has been conducted to briefly asses the influence of shear

moduli of the layers on the values of various static and kinematic quantities.

Figs. 7 and 8 show only the graphs of interlayer slip ∆ and vertical deflection

w as a function of shear modulus G = Ga = Gb. The beam has been modeled

by ten elements E4 with the equidistantly distributed collocation points (E).

It is obvious from Figs. 7-8, that the shear modulus G has an important

influence on static and kinematic quantities. Observe, that slip ∆ over the

left span is smaller, while slip over the right span is, in contrast, higher for

higher shear moduli. On the other hand, the vertical deflection w over the

left span is higher, while vertical deflection over the right span is smaller for

higher shear moduli. For a detailed analysis of the influence of shear moduli

on the mechanical behaviour of two–layer Timoshenko beams with interlayer
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slip the reader is refered to [23].

Figure 7. Distribution of ∆ along the span as a function of different values of shear

moduli, G = Ga = Gb

Figure 8. Distribution of w along the span as a function of different values of shear

moduli, G = Ga = Gb

4 Conclusions
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A new locking-free strain-based finite element formulation for the numerical

treatment of linear static analysis of two-layer planar composite beams with

interlayer slip has been proposed. In this formulation, the modified principle

of virtual work has been employed as a basis for the finite element

discretization. The linear kinematic equations have been included into the

principle by the procedure, similar to that of Lagrangian multipliers. A

strain field vector remains the only unknown function to be approximated in

the finite element implementation of the principle. As a result, in contrast

with many of the displacement-based and mixed finite element formulations

of the composite beams with an interlayer slip, the present formulation is

completely locking-free. The generalization of the composite beam theory

with the inclusion of the Timoshenko beam theory for the individual layer of

composite beam represents a substantial contribution in the field of analysis

of non-slender composite beams with an interlayer slip. The main outcome of

the present formulation is a family of efficient beam finite elements for the

linear static analysis of two-layer planar Timoshenko beams with an

interlayer slip. An extension of the present formulation to nonlinear material

problems is straightforward. There are no locking (shear and slip), poor

convergence or stress oscillations in these finite elements. As only a few finite

elements are needed to describe a composite beam of a frame with great

precision, the new finite element formulations is perfectly suited for practical

calculations.
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Table 1
The comparison of numerical results for one element with the reference solution.

ne d.o.i. type wa(L/2) ∆(0) ‖MC −M‖2

1 0 E/L/G/C 0.290 643 0.116 257 1.78210 · 104

1 1 E/L 0.033 613 0.002 988 2.83842 · 104

G 0.225 855 0.079 659 1.18826 · 104

C 0.178 063 0.060 640 1.34222 · 104

1 2 E/L 0.270 938 0.077 249 1.93548 · 10−10

G 0.270 972 0.077 287 4.32163 · 10−10

C 0.270 959 0.077 273 3.18158 · 10−10

1 3 E 0.270 988 0.077 271 3.56716 · 10−10

L 0.271 028 0.077 289 2.29257 · 10−10

G 0.270 996 0.077 288 3.25371 · 10−10

C 0.271 005 0.077 286 3.31368 · 10−10

1 4 E 0.270 993 0.077 293 1.87862 · 10−10

L 0.270 993 0.077 293 2.89523 · 10−10

G 0.270 993 0.077 293 2.34103 · 10−10

C 0.270 993 0.077 540 3.30434 · 10−10

1 5 E 0.271 026 0.077 293 1.42962 · 10−10

L 0.271 026 0.077 293 2.29257 · 10−10

G 0.271 026 0.077 293 1.23514 · 10−10

C 0.271 026 0.077 293 2.82211 · 10−10

Reference solution 0.271 026 0.077 293 0

ne–number of elements, d.o.i.–degree of interpolation

E–equidistant, L–Lobatto, G–Gaussian, C–Chebyshev
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Table 2
The comparison of numerical results with the reference solution.

ne d.o.i. type wa(L/2) ∆(0) ‖MC −M‖2

2 0 E/L/G/C 0.246 928 0.086 513 1.72959 · 104

2 1 E/L 0.215 860 0.060 491 1.00353 · 104

G 0.263 520 0.079 511 4.20113 · 103

C 0.251 622 0.074 765 4.74548 · 103

2 2 E/L 0.271 029 0.077 288 2.87028 · 10−10

G 0.271 014 0.077 290 2.31795 · 10−10

C 0.271 020 0.077 290 4.21815 · 10−10

2 3 E 0.271 031 0.077 290 4.54423 · 10−10

L 0.271 033 0.077 291 3.35126 · 10−10

G 0.271 034 0.077 291 3.24815 · 10−10

C 0.271 033 0.077 291 2.86409 · 10−10

2 4 E 0.271 026 0.077 293 3.96382 · 10−10

L 0.271 026 0.077 293 5.54296 · 10−10

G 0.271 026 0.077 293 4.08983 · 10−10

C 0.271 026 0.077 293 6.22722 · 10−10

4 0 E/L/G/C 0.264 388 0.079 038 1.2927 · 104

4 1 E/L 0.251 631 0.074 756 3.54803 · 103

G 0.263 518 0.079 501 1.48532 · 103

C 0.260 547 0.078 315 1.67778 · 103

Reference solution 0.271 026 0.077 293 0

ne–number of elements, d.o.i.–degree of interpolation

E–equidistant, L–Lobatto, G–Gaussian, C–Chebyshev
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Table 3
The comparison of numerical results with the reference solution.

ne d.o.i. type wa(L/2) ∆(0) ‖MC −M‖2

4 2 E/L 0.271 023 0.077 291 5.11367 · 10−10

G 0.271 021 0.077 291 7.05474 · 10−10

C 0.271 022 0.077 291 6.60154 · 10−10

4 3 E 0.271 026 0.077 293 1.03876 · 10−10

L 0.271 026 0.077 293 3.65277 · 10−10

G 0.271 026 0.077 293 4.67220 · 10−10

C 0.271 026 0.077 293 4.07509 · 10−10

8 0 E/L/G/C 0.268 728 0.077 167 9.26026 · 103

8 1 E/L 0.260 549 0.078 315 1.25442 · 103

G 0.263 519 0.079 501 5.25141 · 102

C 0.262 776 0.079 204 5.93185 · 102

8 2 E/L 0.271 026 0.077 293 6.92304 · 10−10

G 0.271 026 0.077 293 7.45907 · 10−10

C 0.271 026 0.077 293 1.01180 · 10−10

10 0 E/L/G/C 0.269 248 0.0769 432 8.29534 · 103

10 1 E/L 0.261 619 0.078 742 8.9758 · 102

G 0.263 519 0.079 501 3.7576 · 102

C 0.263 044 0.079 312 4.2445 · 102

10 2 E/L 0.271 026 0.077 293 4.14354 · 10−10

G 0.271 026 0.077 293 6.45604 · 10−10

C 0.271 026 0.077 293 1.01005 · 10−10

Reference solution 0.271 026 0.077 293 0

ne–number of elements, d.o.i.–degree of interpolation

E–equidistant, L–Lobatto, G–Gaussian, C–Chebyshev
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Table 4
The comparison of numerical results for constant interpolation with the reference
solution.

ne d.o.i. type wa(L/2) ∆(0) ‖MC −M‖2

20 0 E/L/G/C 0.269 942 0.077 187 5.87765 · 102

50 0 E/L/G/C 0.270 457 0.077 278 3.71945 · 10−2

100 0 E/L/G/C 0.271 013 0.077 286 2.31448 · 10−7

1000 0 E/L/G/C 0.271 026 0.077 293 1.31255 · 10−10

Reference solution 0.271 026 0.077 293 0

ne–number of elements, d.o.i.–degree of interpolation

E–equidistant, L–Lobatto, G–Gaussian, C–Chebyshev
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