
 
 
 

 
 
 
 
 

 
 

 
 

Jamova cesta 2 
1000 Ljubljana, Slovenija 
http://www3.fgg.uni-lj.si/ 

 
 

DRUGG – Digitalni repozitorij UL FGG 
http://drugg.fgg.uni-lj.si/ 

 
 
 

Ta članek je avtorjeva zadnja recenzirana 
različica, kot je bila sprejeta po opravljeni 
recenziji. 
 
Prosimo, da se pri navajanju sklicujte na 
bibliografske podatke, kot je navedeno: 

 
 

 
 
 

 
 
 

                         University  
                           of Ljubljana  
                                               Faculty of  
                                               Civil and Geodetic 
                                               Engineering 

 
 

Jamova cesta 2 
SI – 1000 Ljubljana, Slovenia 
http://www3.fgg.uni-lj.si/en/ 

 
 

DRUGG – The Digital Repository 
http://drugg.fgg.uni-lj.si/ 

 
 
 

This version of the article is author's 
manuscript as accepted for publishing after 
the review process. 
  
When citing, please refer to the publisher's 
bibliographic information as follows: 

 
 
 

Hozjan, T., Turk, G. Srpčič, S. 2007. Fire analysis of steel frames with the use of artificial 
neural networks. Journal of Constructional Steel Research 63, 10: 1396–1403.  
DOI: 10.1016/j.jcsr.2007.01.013 

 
 
 
 
 

       Univerza 
v Ljubljani 

Fakulteta 
za gradbeništvo 
in geodezijo 

http://www3.fgg.uni-lj.si/
http://drugg.fgg.uni-lj.si/
http://www3.fgg.uni-lj.si/en/
http://drugg.fgg.uni-lj.si/
http://www.sciencedirect.com/science/journal/0143974X
http://www.sciencedirect.com/science/journal/0143974X/63/10
http://dx.doi.org/10.1016/j.jcsr.2007.01.013


Fire Analysis of Steel Frames with the use of

Artificial Neural Networks

T. Hozjana,b, G. Turka, S. Srpčiča, ∗
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Abstract

The paper presents an alternative approach to modelling the mechanical behaviour

of material when exposed to high temperatures as expected in fires. Based on series

of stress-strain curves obtained experimentally for various temperature levels the

artificial neural network (ANN) is employed in material modelling of steel. Geo-

metrically and materially non-linear analysis of plane frame structures subjected to

fire is performed by FEM. The numerical results of a simply supported beam are

compared with measurements showing good agreement although the temperature-

displacement curves exhibit rather irregular shapes. It can be concluded that the

ANN is an efficient tool for modelling the material properties in fire engineering

design studies.
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1 Introduction

In the majority of technical codes the term fire resistance corresponds to the

experimentally verified endurance of individual structural elements or minor

structural assemblages with regard to standardised heating mode in a test

furnace. The standard experimental procedures for determination of fire re-

sistance and the testing based empirical formulae usually describe the local

behaviour of the structural element rather reliably. However, even accurate

results of experiments in a test furnace do not provide an adequate explana-

tion of the mechanism of global behaviour of composed structure as a whole

in a real fire.

Generally, the fire resistance of whole statically indeterminate framed struc-

tures is considerably greater than that of the individual structural compo-

nents. Considering the cost of full-scale tests the development of the research

methods is increasingly oriented towards methods of numerical modelling of

complex thermo-dynamical and thermo-mechanical problems connected with

fire engineering problems. Only efficient numerical algorithms and correspond-

ing software make it possible to perform a large number of parametric studies

on the influence of various parameters on the mechanical response of the struc-

ture caught by fire. However, the significance of the experimental work does

not diminish within this development. On the contrary, experimental data

about thermo-dynamical and thermo-mechanical properties of materials and

structural elements are the necessary basis for any computational analysis and

their required reliability increases with the efficiency and accuracy of available

computing tools.
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Recent numerical procedures for mechanical analysis of load bearing struc-

tures when exposed to fire are mostly based on finite elements with various

levels of non-linearity and sophistication combined with non-linear material

models calibrated with regard to experimental results. However, there are

several uncertainties related to the influence of temperature gradients and the

development of plastic and viscous strains at temperatures above 400◦C.

Experimental investigations of viscous effects of mild steel published as early as

1967 to 1988 by Stanzak, Harmathy, Williams-Leir, Anderberg [1,2,3,4] and

others show that in the temperature range above 400◦C and in the regular

stress range the creep strains appear in the elements of the structure. At

about 500 − 550◦C the creep strain rates become pronounced and the creep

strains often prevail over elastic and plastic strains. Considering the standard

experimental procedures at uniaxial tests at high temperature and ordinary

stress state, it is very difficult to distinguish between the time dependent creep

strains and the time-independent plastic strains.

In order to avoid the ambiguities described above we have recently witnessed

various attempts to capture the inelastic part of the material model just by

a proper set of time-independent stress-strain curves at various temperatures

involving both plastic and viscous effects. Characteristic samples are the mate-

rial models proposed by Eurocode 3 [5] and BS5950 [6] wherein the parameters

of temperature dependent bilinear diagrams with elliptic intermediate part are

given. As has been stated by Huang and Tan [7] the heating rate and the dura-

tion of elevated temperatures have considerable influence on the development

of strains and stresses over the structure. Consequently the time-independent

material models are only suitable in the cases when the temperature of the

steel does not exceed 450◦C. In real fire such temperature regime can only

3



be expected (i) at heat-protected structures when the exposure to the highest

temperatures does not last for too long or (ii) at very low stock of combustion

material not allowing the fire to develop to full extent. In others, more realistic

cases, the experimental data obtained at certain temperature-time curve like

ISO 834 or constant heating rate are only of limited applicability.

A relatively abundant set of results of uniaxial tests on structural steel at

constant specimen heating rate of 10◦C/min has been provided by Kirby and

Preston [8] for two steel qualities (Grades 43A and 50B). The data are given in

tabular form as two series of stress-strain pairs at various temperature levels

for the strains up to 2% in the temperature interval from 20◦C to 900◦C. In

the temperature interval from 250◦C to 600◦C the irregular wavy shapes of

the stress-strain curves do not allow to be approximated by bilinear model

with either elliptic or parabolic intermediate part.

Based on the same data Burgess et al. [9] successfully and efficiently modelled

the slightly wavy stress-strain curves by Ramberg-Osgood equation.

In the present work the idea of employing the artificial neural network (ANN)

was introduced in order to describe the stress-strain-temperature relations.

Some difficulties appearing within the course of modelling the properties of

steel at elevated temperatures by the ANN have been solved by combining the

ANN results with linear regression in the linear elastic range and with linear

extrapolation in the hardening range.
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2 Artificial neural network

The basic idea and the motivation for the early developments of artificial neu-

ral networks (ANN) was the study of the structure and processes in human

brain, which is in several aspects similar to the ANN. They both have units

called neurons which are interconnected. Similarly to a human brain, the ANN

has to be taught or trained. There are two types of learning procedures: super-

vised, in which questions and answers are known and the ANN has to learn

the correct answers; and unsupervised learning, where the answers are not

known.

The ANN is a network of simple units (neurons) which operate locally. The

units are connected by connections which may reduce or amplify the signal

from one unit to another. Each unit receives signals from other units, processes

these signals and transmits the signals to other units.

There are several types of ANN geometry. A review of different ANN’s is

given in several papers, books and Internet sites (e.g. [10,11]). The multi-layer

feed-forward network is usually chosen, if functional approximation is sought.

Since it is our aim to approximate the strain-stress relation, the multi-layer

feed-forward network trained by the supervised learning was chosen.

There are many applications of ANN in structural engineering. Recently, there

have been reports on the use of ANN in the modelling of fatigue crack growth

[12,13], the modelling of the mechanical properties of steels [14], the modelling

of the load carrying capacity of steel struts [15], the modelling of confined

reinforced columns [16,17], the modelling of steel columns strength under fire

[18] and other interesting applications [19,20].
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2.1 Multi-layer feed-forward network

The geometry of a multi-layer feed-forward neural network is shown in Fig-

ure 1. Input units are connected to the first layer of hidden units which are

further connected to the units of the second hidden layer. The units of the last

hidden layer are connected to the output units. The multi-layer feed-forward

networks are usually employed for the approximation of the unknown func-

tional relation.

The input units represent the input data, and the output units represent the

output data. The hidden layers and all the connections between the units may

be considered as a black box which performs the necessary transformations of

the input data so that the target output data are obtained.

Each unit is represented by its value yk
i . Each connection between the units

is represented by its weight wk
ij. The index i corresponds to the unit number

of the kth layer, while index j corresponds to the unit number of the (k− 1)th

layer. The input layer is denoted by 0 and the output layer is denoted by

nl. The signals travel in only one direction, i.e. from the input layer towards

the output layer. The value of a unit yk−1
j is multiplied by the corresponding

weight wk
ij and added to the value of the signal in the unit of the next layer.

In addition, the value of bias neuron or threshold ϑk
i is added to the equation

yk
i = f

nk−1∑
j=1

wk
ij yk−1

j + ϑk
i

 . (1)

This equation is illustrated in Figure 1 in which bias neurons are not shown

since each bias neuron is connected to only one regular neuron and is not

connected to any other neuron. The activation function f(.) enables the mod-

elling of an arbitrary non-linear relation between input and output variables.
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Different functions could be used as an activation function, the usual choices

being a sigmoid function

f(y) =
1

1 + e−y
,

tanh y, or Gaussian. The behaviour of the neural network depends on the

values of the weights wk
ij and thresholds ϑk

i which have to be determined by

the learning (training) procedure.

The set of known input and output values is termed an input-output pair.

All input-output pairs are often divided into two sets. The first one is termed

as learning or training set which is used to determine the connection weights

wk
ij and thresholds ϑk

i . When the learning procedure ends, meaning that the

neural network performs adequately for all input-output pairs in the learning

set, the neural network is assessed on the testing set of data.

In some cases the training procedure becomes ill-conditioned if the input

and/or output data are not normalised (see e.g. [11]). Therefore, for numeri-

cal reasons the values of input and output units have to be normalized. The

normalization of the values of output units depends on the range of activation

function. Usually, the linear transformation works well, although sometimes a

non-linear transformation may help if the data are clustered.

The supervised learning is in fact a general optimization problem in which the

minimum of error Ep is sought

Ep =
1

2

no∑
i=1

(
tpi − ynl

pi

)2
, (2)

where tpi are the target output values, ynl
pi are the values of neurons in the

output layer nl, i.e. the output values evaluated by the ANN, no is the number

of neurons in the output layer, i.e. the number of output variables.
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This problem is numerically very demanding since a large number of local

minima usually exist. There are two essentially different approaches: error

back-propagation algorithms which are basically a gradient method and ge-

netic algorithms which are in fact a stochastic search.

The parameters, i.e. the number of hidden layers and the number of hidden

neurons of the optimal neural network, are problem dependent. If the number

of units is very large, the learning procedure may be very slow, since each

forward calculation takes a substantial computational effort. Although larger

networks are usually able to learn the sought relationship, this may sometimes

be a drawback. A large network may easily reproduce the training set of

input-output pairs but fails to generalize, yielding a poor testing performance.

Networks with insufficient units may have problems to learn properly during

the learning procedure.

3 Material model

The material model, later used in the mechanical analysis, was constructed

by the ANN on the basis of experimental data [8]. The neural network was

thought to estimate stress σ, while strain ε and temperature T were used as in-

put data. The calculation was carried out for steel strength fy = 35.5 kN/cm2.

All 527 input-output pairs were divided into two sets: learning and testing

set. Different sizes of learning and testing sets were tried, however the results

did not differ considerable. Finally, 435 randomly selected pairs were used for

learning and the remaining 92 were used as testing pairs.

The allowed relative error was set to 0.05, which is a relatively low value
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in an ANN training procedure. Many calculations with different geometry of

neural network were carried out. On the basis of results the final solution was

calculated with the geometry 2-50-50-1, i.e. there were two hidden layers, each

of them including 50 neurons. The efficiency of learning procedure is shown

in Figure 2, where actual and calculated values belonging to testing set are

compared. In this case the coefficient of correlation was very high: r2 = 0.9993.

The results of the ANN are shown in Figure 3, which represents the stress-

strain relationship at different temperature levels T . The experimental data

of stress are shown with rombic marks, while calculated values are presented

with a continuous line.

The accordance between the calculated values obtained by the ANN and the

experimental ones is very good along the entire σ−ε curve for all temperature

levels.

However, some difficulties appear within the course of modelling the proper-

ties of steel at elevated temperatures by the ANN. Firstly, the yield points

of particular stress-strain curves are not explicitly defined by the curve shape

itself. The problem was solved by plotting the first derivatives of the experi-

mentally obtained stress-strain relations where the yield limits are much better

pronounced. Secondly, due to the regressions used in the ANN the obtained

approximations for the stress-strain relations below the yield limit exhibit cer-

tain deviations from a linear shape. Assuming ideal linear behaviour of steel

the linear regression based on actual experimental data has been used for this

range. Lastly, since the experimental data are given for the values of strains of

up to 2%, the ANN model is inadequate for the range of strains higher than

2% and a constant hardening parameter is introduced in this strain range.
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According to that, the presented material model is divided into three parts

(Figure 4). The first part is linear elastic εM < εY and the stress σ is deter-

mined by linear elastic law

σ(εM, T ) = ETεM = kE,TE20εM, (3)

where kE,T stands for reduction factor of the elastic modulus, describing its

variation in dependency of the temperature T refering to the elastic modulus

E20 at the room-temperature T = 20◦C.

The second part stands for the plastic range where the mechanical strain

exceeds the yield strain εM > εY. In this range, the stress is calculated by the

ANN, in accordance with the actual values of the mechanical strain εM and

temperature T

σ(εM, T ) = fANN(εM, T ). (4)

In the range where the mechanical strain exceeds the value of εM > 1.85%,

a uniform strain-hardening parameter K is considered. The value of K is

determined by the slope of the stress-strain curve at the strain εM = 1.85%

and at the corresponding temperature T (K = K(εM = 1.85%, T )).

The yield strain εy and the reduction factors ky,T and kE,T are determined on

the basis of experimental data [8]. The reduction factors compared with those

prescribed by Eurocode 3 [5] are shown in Figure 5.

We should note that experimental data [8] are determined at the heating rate

10◦C/min and therefore the applicability of this material model is limited. The

authors mention that the results for these heating rates are quite similar to the

results obtained by other researchers, whose measurements were performed at

different heating rates, namely 2.5◦C/min, 5◦C/min and 20◦C/min. With this
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statement the application of the presented model at different heating rates is

acceptable, when provided that the heating rate does not differ from 10◦C/min

excessively.

4 Beam theory

The analysis of beam elements is based on the presumption that particular

longitudinal filaments of the element are exposed to uniaxial stress state. In

this case the results of uniaxial tests are of direct relevance for the formula-

tion of constitutive relations. This means that we have to deal with physical

values of stresses and strains which refer to the initial, non-deformed state of

the element. It can also be presumed that the temperature of any point of

the element is a known function of time T = T (t). In order to consider the

geometrically and materially non-linear behaviour of an element, the relation

between strain ε, temperature T , time t and longitudinal normal stress σ shall

be found in an incremental form. In this paper, in spite of the doubts about

its suitability at high temperatures, the additive principle is adopted, where

the geometrical strain increment ∆ε is a sum of the mechanical part ∆εM ,

temperature part ∆εT and viscous part ∆εC

∆ε = ∆εM + ∆εT + ∆εC . (5)

All the increments refer to the time step [t(n), t(n+1)].
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4.1 The strain increment due to temperature change

In this paper the strain increment ∆εT induced by the temperature change

∆T = T (n+1)−T (n) is determined according to Eurocode 3: prEN 1993-1-2 [2]

where the total temperature strain is given for three characteristic temperature

ranges

20◦C ≤ T < 750◦C : εT = 1.2 · 10−5 T + 0.4 · 10−8 T 2 + −2.416 · 10−4,

750◦C ≤ T ≤ 860◦C : εT = 1.1 · 10−2,

860◦C < T ≤ 1200◦C : εT = 2 · 10−5 T − 6.2 · 10−3.

After calculating the total temperature strains ε
(n)
T at the beginning and ε

(n+1)
T

at the end of the time step considered, the temperature strain increment is

obtained simply by the difference

∆εT = ε
(n+1)
T − ε

(n)
T . (6)

4.2 The strain increment due to the creep of the steel

Harmathy’s [1] model based on the general Dorn’s theory of viscous creep has

been proved to be a rather good tool for simulation of the time dependent

behaviour of metals at elevated temperatures. A modified form of Harmathy’s

model was published by Williams-Leir [3] relating the creep strain εC to the

real time t

dεC

dt
= sign(σ) b1 coth2(b2|εC |). (7)

On the basis of numerous experiments Williams-Leir [3] provided analytical

expressions for the creep parameters b1 and b2 for various kinds of struc-

tural steel in terms of the absolute temperature T [K] and actual stress level
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σ [lbf/in2]. Within the incremental approach, the creep equation (7) can be

employed in every short time interval ∆t = t(n+1) − t(n), although it has been

derived under the assumption of constant temperature and stress. By these

means, the creep strain increment is given by the following relation

∆εC = sign (σ) b1 coth2(b2|εC |)∆t. (8)

However, in the present work the ANN material model based on experimental

data [8] is assumed to contain elastic, plastic and creep strains. Therefore,

the increment of the creep strain does no longer explicitly take place in the

additive principle (5).

4.3 The mechanical strain increment

The mechanical strain increment ∆εM , which originally does not explicitly

depend upon time and temperature and is related to the longitudinal normal

stress by the parameters of a uniaxial test, consists of an elastic part ∆εE and

a plastic part ∆εP

∆εM = ∆εE + ∆εP = ∆ε − ∆εT (9)

An essential step towards the determination of the stress-strain state of an

arbitrary point of the cross-section at the end of the time step [t(n), t(n+1)] is

the introduction of an auxiliary state [21] which is not necessary an actual

stress state. Assuming that all relevant quantities at the initial time t(n) are
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known we first consider the trial purely elastic step defined by the formulas

σ(n+1)trial
= σ(n) + ∆E ε

(n)
E + E(n+1)∆εM ,

ξ(n+1)trial
= σ(n+1)trial − q(n),

ε
(n+1)
P

trial
= ε

(n)
P ,

γ(n+1)trial
= γ(n),

q(n+1)trial
= q(n),

f (n+1)trial
= |ξ(n+1)trial| − σY .

(10)

In the equations listed above εE and εP are the total elastic and plastic strains

respectively, while ∆E = E(n+1) −E(n) denotes the change of the modulus of

elasticity corresponding to the time interval [t(n), t(n+1)]. In order to simulate

the Bauschinger effect by means of kinematic hardening model, the relative

stress ξ is introduced in dependency of the back-stress q which describes the

centre of the actual yield surface. γ > 0 is the accumulated plastic strain

and σY is the actual yield limit. The auxiliary yield function f trial defines the

status of the point at the end of the time step. If f (n+1)trial ≤ 0 there is an

elastic step and the trial state coincides with the actual stress-strain state at

the time t(n+1)

σ(n+1) = σ(n+1)trial
,

ε
(n+1)
P = ε

(n+1)
P

trial
,

γ(n+1) = γ(n+1)trial
,

q(n+1) = q(n+1)trial
.

(11)

The alternative case, if f (n+1)trial
> 0, denotes a plastic step characterised by

the absolute increment ∆γ of the plastic strain

∆γ =
|σ(n+1)trial| − sign(σ(n+1)trial

) σ(n+1)

E(n+1)
> 0. (12)
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In this case the stress-strain state at the time t(n+1) is defined by the following

formulas

σ(n+1) = σ(n+1)trial − ∆γ E(n+1) sign(ξ(n+1)trial
),

ε
(n+1)
P = εn

P + ∆γ sign(ξ(n+1)trial
),

q(n+1) = q(n) + ∆γ H sign(ξ(n+1)trial
),

γ(n+1) = γ(n) + ∆γ.

(13)

Here H is the elastoplastic tangent modulus. When using the bilinear mate-

rial model, the elastoplastic tangent modulus can be expressed by the plastic

modulus K with the relation

H(T ) =
E(T ) K(T )

E(T ) + K(T )
(14)

4.4 Program POZAR

The constitutive relations described in the preceding section have been in-

corporated into the computer program POZAR. The program uses a novel

finite element formulation to determine the mechanical response of the planar

frame [22,23,24] subjected to time variable mechanical and temperature load.

The formulation is based on the modified Hu-Washizu [25] functional for the

kinematically exact planar beam theory of Reissner [26]. The only unknown

functions in the functional, the extensional strain, ε, and the pseudo-curvature,

κ, are approximated by the Lagrangian interpolation scheme. The remaining

unknown functions, i.e. displacements, the rotation and the internal forces and

moments, appear in the functional only through their boundary values. The

finite element formulation yields a system of discrete generalized equilibrium

equations of the structure which is solved by the Newton incremental iterative

method.
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5 Numerical example

A simply supported beam was analysed with the aim to verify the material

model and numerical algorithms used. The numerical results were compared

with the experimental ones published by Rubert and Schaumann [27] who

carried out several elevate temperature tests on simply supported beams under

simultaneous mechanical and thermal loading. The beams, having an IPE 80

cross-section (DIN 1025-1) and the length of 1.14 m, were subjected to a

constant midspan concentrated load and then heated uniformly along their

entire length (Figure 6).

In this paper, eight finite elements were used for modelling the beam. For

the elastic modulus and yield strength at the room temperature T = 20◦C,

the value from experiment [8] was used: E20 = 19200 kN/cm2 and fy,20 =

35.5 kN/cm2. When testing the beam, four different load utilisation factors

η = 0.20, 0.50, 0.70, 0.85 were considered, representing the ratios of the

applied loads to the ultimate load carrying capacity at room temperature.

Since the values of the yield strength fy,20 at different load ratios η were

different, suitable loads were calculated according to different η (Table 1) in

order to compare the results of the midspan displacement w.

In addition to the material model described above, a material model according

to the Eurocode 3 [5] standard and a bilinear material model [28] were also

considered. When the bilinear material model was discussed, the creep of steel

(Austen 50) [3], was taken into consideration.

The midspan displacements w obtained numerically using three material mod-

els are shown in Figure 7. In the case of the ANN material model, the results
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are in very good agreement with the experiment at all load ratios η. On the

other hand, this statement does not apply for the bilinear model. Although

the accordance at lower load ratios is good, at higher load ratios the differ-

ence increases thus indicating that the creep strains are already included in

the time independent results of uniaxial tests. The material model according

to the Eurocode 3 standards yields rather good accuracy at lower load ratios,

while at higher load ratios the difference is noticeable, especially in the range

where the displacement w exhibits irregular behaviour.

The development of plastic strain εP at the bottom of the mid-section with

respect to raising temperature T is shown in Figure 8. The differences be-

tween the bilinear model and other two models become evident at relatively

low temperatures due to the fact that it is virtually impossible to reliably sim-

ulate steel behaviour at elevated temperatures by bilinear model. The initial

development of plastic strains in the cases of the ANN and Eurocode models

is similar. The differences at high temperature stem from the fact that in the

case of Eurocode model the material hardening is not considered.

Figure 9 shows the time dependent development of strains and stresses at the

bottom and at the top of the middle cross-section for the case of the ANN

material model.

Furthermore, in Figure 10 the distribution of stress and strains over the middle

cross-section is shown for five characteristic time steps also showing the per-

centage of the already plastified part of the cross-section. The latter data are

more important in real fire scenarios, where the residual stresses and strains

have to be determined in order to estimate the eventual further usage of the

beam.
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6 Conclusions

The paper presents a non-linear analysis of steel frames subjected to fire.

The main emphasis is on the use of artificial neural network (ANN) in the

formulation of the material model of structural steel at elevated temperature

levels on the basis of experimental data. This way, very good agreement of

numerically determined displacements of the test beam with experimental

results was achieved even at higher load ratios. The employment of ANN

proved to be an improvement with respect to commonly used material models

since the latter show considerably larger errors for higher load ratio when

compared to experimental results (see Fig. 7).

So far, the conclusion is limited with regard to the steel yield strength fy =

35.5 kN/cm2 and to the heating rate 10◦C/min. Nevertheless, the results al-

low the assumption that the procedure can be succesfully applied also to other

kinds of steel and different heating rates. It shall also be noted that the time

dependent creep strain is ment to be included in the plastic, time independent

range of the presented material model. Numerous more demanding experi-

mental tests should be carried out in order to obtain more information on

the inelastic range of steel behaviour at elevated temperatures with special

atention to treating the relations between plastic and time dependent creep

strains.
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Figure 1: Multi-layer feed-forward artificial neural network

Figure 2: Comparison between actual and calculated values of stress σ

Figure 3: Stress-strain curves σ − ε at different temperatures T

Figure 4: Stress-strain relationship σ − ε at temperature T = 400◦C

Figure 5: Reduction factor ky,T in kE,T of presented stress-strain relationship

at elevated temperatures

Figure 6: Beam numerical model

Figure 7: Displacement w at different load ratios η

Figure 8: Development of plastic strains εP

Figure 9: Time development of strains and stress in mid section at load ratio

η = 0.85

Figure 10: Development of strains and stress in the section at the load ratio

η = 0.85
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Fig. 1.
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Table 1 Calculation values of the force F

load ratio η fy experiment F experiment F calculation

[kN/cm2] [kN] [kN]

0.85 35.2 24 24.2

0.70 39.9 23 20.5

0.50 39.9 16 14.2

0.20 39.9 6 5.3
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